zinc toxicity
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 44)

H-INDEX

38
(FIVE YEARS 4)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Jamisha D. Francis ◽  
Miriam A. Guevara ◽  
Jacky Lu ◽  
Shabir A. Madhi ◽  
Gaurav Kwatra ◽  
...  

Abstract Background Streptococcus agalactiae or Group B Streptococcus (GBS) is an encapsulated gram-positive bacterial pathobiont that commonly colonizes the lower gastrointestinal tract and reproductive tract of human hosts. This bacterium can infect the gravid reproductive tract and cause invasive infections of pregnant patients and neonates. Upon colonizing the reproductive tract, the bacterial cell is presented with numerous nutritional challenges imposed by the host. One strategy employed by the host innate immune system is intoxication of bacterial invaders with certain transition metals such as zinc. Methodology Previous work has demonstrated that GBS must employ elegant strategies to circumnavigate zinc stress in order to survive in the vertebrate host. We assessed 30 strains of GBS from diverse isolation sources, capsular serotypes, and sequence types for susceptibility or resistance to zinc intoxication. Results Invasive strains, such as those isolated from early onset disease manifestations of GBS infection were significantly less susceptible to zinc toxicity than colonizing strains isolated from rectovaginal swabs of pregnant patients. Additionally, capsular type III (cpsIII) strains and the ST-17 and ST-19 strains exhibited the greatest resilience to zinc stress, whereas ST-1 and ST-12 strains as well as those possessing capsular type Ib (cpsIb) were more sensitive to zinc intoxication. Thus, this study demonstrates that the transition metal zinc possesses antimicrobial properties against a wide range of GBS strains, with isolation source, capsular serotype, and sequence type contributing to susceptibility or resistance to zinc stress.


2021 ◽  
Vol 22 (24) ◽  
pp. 13337
Author(s):  
Sylwia Gul-Hinc ◽  
Anna Michno ◽  
Marlena Zyśk ◽  
Andrzej Szutowicz ◽  
Agnieszka Jankowska-Kulawy ◽  
...  

Brain pathologies evoked by thiamine deficiency can be aggravated by mild zinc excess. Cholinergic neurons are the most susceptible to such cytotoxic signals. Sub-toxic zinc excess aggravates the injury of neuronal SN56 cholinergic cells under mild thiamine deficiency. The excessive cell loss is caused by Zn interference with acetyl-CoA metabolism. The aim of this work was to investigate whether and how astroglial C6 cells alleviated the neurotoxicity of Zn to cultured SN56 cells in thiamine-deficient media. Low Zn concentrations did not affect astroglial C6 and primary glial cell viability in thiamine-deficient conditions. Additionally, parameters of energy metabolism were not significantly changed. Amprolium (a competitive inhibitor of thiamine uptake) augmented thiamine pyrophosphate deficits in cells, while co-treatment with Zn enhanced the toxic effect on acetyl-CoA metabolism. SN56 cholinergic neuronal cells were more susceptible to these combined insults than C6 and primary glial cells, which affected pyruvate dehydrogenase activity and the acetyl-CoA level. A co-culture of SN56 neurons with astroglial cells in thiamine-deficient medium eliminated Zn-evoked neuronal loss. These data indicate that astroglial cells protect neurons against Zn and thiamine deficiency neurotoxicity by preserving the acetyl-CoA level.


2021 ◽  
Vol 8 (3) ◽  
pp. 169-175
Author(s):  
Wilma Delphine Silvia CR ◽  
Rashmi R N ◽  
Venkatesha

Zinc is a micromineral present in the body tissues and fluids. Zinc is absorbed from the duodenum and stored in the form of metallothionine in the liver and excreted through sweat. Zinc plays a vital role in protein biosynthesis, gene expression; it also acts as an antioxidant and is used in the growth of the fungus. Due to the deficiency of zinc, a patient will be suffering from poor wound healing, lesions of skin, impaired spermatogenesis, hyperkeratosis, dermatitis and alopecia.An unprecedented COVID-19 pandemic caused by a novel corona virus called SARS-CoV-2, produces severe acute respiratory distress syndrome (ARDS). Zinc is used to treat COVID 19 because it improves the immunity. As the COVID patients are susceptible to zinc deficiency, they are prescribed with zinc supplements. Intake of zinc more than1000mg/day causes Zinc toxicity. Fungus utilises zinc for its growth. Mucormycosis caused by fungus Rhizopus species seen in most of the post COVID patients. Since, Zinc has assumed importance in this COVID 19 pandemic, this review article unfathoms the explicit roles of Zinc in humans.


2021 ◽  
Vol 43 (11) ◽  
Author(s):  
Atousa Vazifeh Eisalou ◽  
Shahram Namdjoyan ◽  
Ali Abolhasani Soorki

2021 ◽  
Author(s):  
Anna S Amiss ◽  
Jessica B von Pein ◽  
Jessica R Webb ◽  
Nicholas D Condon ◽  
Peta J Harvey ◽  
...  

Bacteria that occupy an intracellular niche can evade extracellular host immune responses and antimicrobial molecules. In addition to classic intracellular pathogens, other bacteria including uropathogenic Escherichia coli (UPEC) can adopt both extracellular and intracellular lifestyles. UPEC intracellular survival and replication complicates treatment, as many therapeutic molecules do not effectively reach all components of the infection cycle. In this study, we explored cell penetrating antimicrobial peptides from distinct structural classes as alternative molecules for targeting bacteria. We identified two β-hairpin peptides from the horseshoe crab, tachyplesin I and polyphemusin I, with broad antimicrobial activity toward a panel of pathogenic and non-pathogenic bacteria in planktonic form. Peptide analogues [I11A]tachyplesin I and [I11S]tachyplesin I maintained activity toward bacteria, but were less toxic to mammalian cells than native tachyplesin I. This important increase in therapeutic window allowed treatment with higher concentrations of [I11A]tachyplesin I and [I11S]tachyplesin I, to significantly reduce intramacrophage survival of UPEC in an in vitro infection model. Mechanistic studies using bacterial cells, model membranes and cell membrane extracts, suggest that tachyplesin I and polyphemusin I peptides kill UPEC by selectively binding and disrupting bacterial cell membranes. Moreover, treatment of UPEC with sublethal peptide concentrations increased zinc toxicity and enhanced innate macrophage antimicrobial pathways. In summary, our combined data show that cell penetrating peptides are attractive alternatives to traditional small molecule antimicrobials for treating UPEC infection, and that optimization of native peptide sequences can deliver effective antimicrobials for targeting bacteria in extracellular and intracellular environments.


Microbiology ◽  
2021 ◽  
Vol 167 (6) ◽  
Author(s):  
Indrani Sarker ◽  
Lisa R. Moore ◽  
Sasha G. Tetu

Marine plastic pollution is a growing concern worldwide and has the potential to impact marine life via leaching of chemicals, with zinc (Zn), a common plastic additive, observed at particularly high levels in plastic leachates in previous studies. At this time, however, little is known regarding how elevated Zn affects key groups of marine primary producers. Marine cyanobacterial genera Prochlorococcus and Synechococcus are considered to be some of the most abundant oxygenic phototrophs on earth, and together contribute significantly to oceanic primary productivity. Here we set out to investigate how two Prochlorococcus (MIT9312 and NATL2A) and two Synechococcus (CC9311 and WH8102) strains, representative of diverse ecological niches, respond to exposure to high Zn concentrations. The two genera showed differences in the timing and degree of growth and physiological responses to elevated Zn levels, with Prochlorococcus strains showing declines in their growth rate and photophysiology following exposure to 27 µg l−1 Zn, while Synechococcus CC9311 and WH8102 growth rates declined significantly on exposure to 52 and 152 µg l−1 Zn, respectively. Differences were also observed in each strain’s capacity to maintain cell wall integrity on exposure to different levels of Zn. Our results indicate that excess Zn has the potential to pose a challenge to some marine picocyanobacteria and highlights the need to better understand how different marine Prochlorococcus and Synechococcus strains may respond to increasing concentrations of Zn in some marine regions.


Planta ◽  
2021 ◽  
Vol 253 (6) ◽  
Author(s):  
Harmanjit Kaur ◽  
Neera Garg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document