scholarly journals Dsc Orthologs Are Required for Hypoxia Adaptation, Triazole Drug Responses, and Fungal Virulence in Aspergillus fumigatus

2012 ◽  
Vol 11 (12) ◽  
pp. 1557-1567 ◽  
Author(s):  
Sven D. Willger ◽  
E. Jean Cornish ◽  
Dawoon Chung ◽  
Brittany A. Fleming ◽  
Margaret M. Lehmann ◽  
...  

ABSTRACTHypoxia is an environmental stress encountered byAspergillus fumigatusduring invasive pulmonary aspergillosis (IPA). The ability of this mold to adapt to hypoxia is important for fungal virulence and genetically regulated in part by the sterol regulatory element binding protein (SREBP) SrbA. SrbA is required for fungal growth in the murine lung and to ultimately cause lethal disease in murine models of IPA. Here we identified and partially characterized four genes (dscA,dscB,dscC, anddscD, here referred to asdscA-D) with previously unknown functions inA. fumigatusthat are orthologs of theSchizosaccharomyces pombegenesdsc1,dsc2,dsc3, anddsc4(dsc1-4), which encode a Golgi E3 ligase complex critical for SREBP activation by proteolytic cleavage.A. fumigatusnulldscA-Dmutants displayed remarkable defects in hypoxic growth and increased susceptibility to triazole antifungal drugs. Consistent with the confirmed role of these genes inS. pombe, both ΔdscAand ΔdscCresulted in reduced cleavage of the SrbA precursor protein inA. fumigatus. Inoculation of corticosteroid immunosuppressed mice with ΔdscAand ΔdscCstrains revealed that these genes are critical forA. fumigatusvirulence. Reintroduction of SrbA amino acids 1 to 425, encompassing the N terminus DNA binding domain, into the ΔdscAstrain was able to partially restore virulence, further supporting a mechanistic link between DscA and SrbA function. Thus, we have shown for the first time the importance of a previously uncharacterized group of genes inA. fumigatusthat mediate hypoxia adaptation, fungal virulence, and triazole drug susceptibility and that are likely linked to regulation of SrbA function.

2016 ◽  
Vol 84 (6) ◽  
pp. 1866-1878 ◽  
Author(s):  
Yakir Vaknin ◽  
Falk Hillmann ◽  
Rossana Iannitti ◽  
Netali Ben Baruch ◽  
Hana Sandovsky-Losica ◽  
...  

Aspergillus fumigatusis the most common pathogenic mold infecting humans and a significant cause of morbidity and mortality in immunocompromised patients. In invasive pulmonary aspergillosis,A. fumigatusspores are inhaled into the lungs, undergoing germination and invasive hyphal growth. The fungus occludes and disrupts the blood vessels, leading to hypoxia and eventual tissue necrosis. The ability of this mold to adapt to hypoxia is regulated in part by the sterol regulatory element binding protein (SREBP) SrbA and the DscA to DscD Golgi E3 ligase complex critical for SREBP activation by proteolytic cleavage. Loss of the genes encoding these proteins results in avirulence. To identify novel regulators of hypoxia sensing, we screened theNeurospora crassagene deletion library under hypoxia and identified a novel rhomboid family protease essential for hypoxic growth. Deletion of theA. fumigatusrhomboid homologrbdAresulted in an inability to grow under hypoxia, hypersensitivity to CoCl2, nikkomycin Z, fluconazole, and ferrozine, abnormal swollen tip morphology, and transcriptional dysregulation—accurately phenocopying deletion ofsrbA. In vivo,rbdAdeletion resulted in increased sensitivity to phagocytic killing, a reduced inflammatory Th1 and Th17 response, and strongly attenuated virulence. Phenotypic rescue of the ΔrbdAmutant was achieved by expression and nuclear localization of the N terminus of SrbA, including its HLH domain, further indicating that RbdA and SrbA act in the same signaling pathway. In summary, we have identified RbdA, a novel putative rhomboid family protease inA. fumigatusthat mediates hypoxia adaptation and fungal virulence and that is likely linked to SrbA cleavage and activation.


2009 ◽  
Vol 9 (3) ◽  
pp. 424-437 ◽  
Author(s):  
Jorge Amich ◽  
Rocío Vicentefranqueira ◽  
Fernando Leal ◽  
José Antonio Calera

ABSTRACTAspergillus fumigatushas three zinc transporter-encoding genes whose expression is regulated by both pH and the environmental concentration of zinc. We have previously reported that thezrfAandzrfBgenes ofA. fumigatusare transcribed at higher levels and are required for fungal growth under acidic zinc-limiting conditions whereas they are dispensable for growth in neutral or alkaline zinc-limiting media. Here we report that the transporter of the zinc uptake system that functions inA. fumigatusgrowing in neutral or alkaline environments is encoded byzrfC. The transcription ofzrfCoccurs divergently with respect to the adjacentaspf2gene, which encodes an immunodominant antigen secreted byA. fumigatus. The two genes—zrfCandaspf2—are required to different extents for fungal growth in alkaline and extreme zinc-limiting media. Indeed, these environmental conditions induce the simultaneous transcription of both genes mediated by the transcriptional regulators ZafA and PacC. ZafA upregulates the expression ofzrfCandaspf2under zinc-limiting conditions regardless of the ambient pH, whereas PacC represses the expression of these genes under acidic growth conditions. Interestingly, the mode of action of PacC forzrfC-aspf2transcription contrasts with the more widely accepted model for PacC function, according to which under alkaline growth conditions PacC would activate the transcription of alkaline-expressed genes but would repress the transcription of acid-expressed genes. In sum, this report provides a good framework for investigating several important aspects of the biology of species ofAspergillus, including the repression of alkaline genes by PacC at acidic pH and the interrelationship that must exist between tissue pH, metal availability in the host tissue, and fungal virulence.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Luyu Guan ◽  
Ruiyang Lu ◽  
Zhengjun Wu ◽  
Guowei Zhong ◽  
Shizhu Zhang

ABSTRACT The rise of drug resistance in fungal pathogens is becoming a serious problem owing to the limited number of antifungal drugs available. Identifying and targeting factors essential for virulence or development unique to fungal pathogens is one approach to develop novel treatments for fungal infections. In this study, we present the identification and functional characterization of a novel developmental regulator in Aspergillus fumigatus, AfMed15, which contained a conserved Med15_fungal domain, as determined by screening of a mutant library that contained more than 2,000 hygromycin-resistant A. fumigatus transformants. Downregulating the expression of Afmed15 abolished the conidiation and decreased the fungal virulence in an insect model. Strikingly, the overexpression of Afmed15 caused fungal death accompanied by intensive autophagy. RNA sequencing of an Afmed15 overexpression strain revealed that altered gene expression patterns were associated with carbon metabolism, energy metabolism, and translation. Interestingly, the addition of metal ions could partially rescue fungal death caused by the overexpression of Afmed15, indicating that disordered ion homeostasis is a potential reason for the fungal death caused by the overexpression of Afmed15. Considering that the precise expression of Afmed15 is crucial for fungal development, virulence, and survival and that no ortholog was found in humans, Afmed15 is an ideal target for antifungal-drug development. IMPORTANCE The identification and characterization of regulators essential for virulence or development constitute one approach for antifungal drug development. In this study, we screened and functionally characterized Afmed15, a novel developmental regulator in A. fumigatus. We demonstrate that the precise transcriptional expression of Afmed15 is crucial for fungal asexual development, virulence, and survival. Downregulating the expression of Afmed15 abolished the conidiation and decreased the fungal virulence in an insect model. In contrast, the overexpression of Afmed15 caused fungal death accompanied by intensive autophagy. Our study provides a foundation for further studies to identify compounds perturbing the expression of Afmed15 that may be used for the prevention of invasive A. fumigatus infections.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jorge Amich ◽  
Zeinab Mokhtari ◽  
Marlene Strobel ◽  
Elena Vialetto ◽  
Dalia Sheta ◽  
...  

ABSTRACT Aspergillus fumigatus is an opportunistic fungal pathogen that can cause life-threatening invasive lung infections in immunodeficient patients. The cellular and molecular processes of infection during onset, establishment, and progression of A. fumigatus infections are highly complex and depend on both fungal attributes and the immune status of the host. Therefore, preclinical animal models are of paramount importance to investigate and gain better insight into the infection process. Yet, despite their extensive use, commonly employed murine models of invasive pulmonary aspergillosis are not well understood due to analytical limitations. Here, we present quantitative light sheet fluorescence microscopy (LSFM) to describe fungal growth and the local immune response in whole lungs at cellular resolution within its anatomical context. We analyzed three very common murine models of pulmonary aspergillosis based on immunosuppression with corticosteroids, chemotherapy-induced leukopenia, or myeloablative irradiation. LSFM uncovered distinct architectures of fungal growth and degrees of tissue invasion in each model. Furthermore, LSFM revealed the spatial distribution, interaction, and activation of two key immune cell populations in antifungal defense: alveolar macrophages and polymorphonuclear neutrophils. Interestingly, the patterns of fungal growth correlated with the detected effects of the immunosuppressive regimens on the local immune cell populations. Moreover, LSFM demonstrates that the commonly used intranasal route of spore administration did not result in complete intra-alveolar deposition, as about 80% of fungal growth occurred outside the alveolar space. Hence, characterization by LSFM is more rigorous than by previously used methods employing murine models of invasive pulmonary aspergillosis and pinpoints their strengths and limitations. IMPORTANCE The use of animal models of infection is essential to advance our understanding of the complex host-pathogen interactions that take place during Aspergillus fumigatus lung infections. As in the case of humans, mice need to suffer an immune imbalance in order to become susceptible to invasive pulmonary aspergillosis (IPA), the most serious infection caused by A. fumigatus. There are several immunosuppressive regimens that are routinely used to investigate fungal growth and/or immune responses in murine models of invasive pulmonary aspergillosis. However, the precise consequences of the use of each immunosuppressive model for the local immune populations and for fungal growth are not completely understood. Here, to pin down the scenarios involving commonly used IPA models, we employed light sheet fluorescence microscopy (LSFM) to analyze whole lungs at cellular resolution. Our results will be valuable to optimize and refine animal models to maximize their use in future research.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Emily E. Rosowski ◽  
Jiaye He ◽  
Jan Huisken ◽  
Nancy P. Keller ◽  
Anna Huttenlocher

ABSTRACT Antifungal therapy can fail in a remarkable number of patients with invasive fungal disease, resulting in significant morbidity worldwide. A major contributor to this failure is that while these drugs have high potency in vitro, we do not fully understand how they work inside infected hosts. Here, we used a transparent larval zebrafish model of Aspergillus fumigatus infection amenable to real-time imaging of invasive disease as an in vivo intermediate vertebrate model to investigate the efficacy and mechanism of the antifungal drug voriconazole. We found that the ability of voriconazole to protect against A. fumigatus infection depends on host innate immune cells and, specifically, on the presence of macrophages. While voriconazole inhibits fungal spore germination and growth in vitro, it does not do so in larval zebrafish. Instead, live imaging of whole, intact larvae over a multiday course of infection revealed that macrophages slow down initial fungal growth, allowing voriconazole time to target and kill A. fumigatus hyphae postgermination. These findings shed light on how antifungal drugs such as voriconazole may synergize with the immune response in living hosts.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


2018 ◽  
Vol 62 (3) ◽  
Author(s):  
Shang-Jie Yu ◽  
Ya-Lin Chang ◽  
Ying-Lien Chen

ABSTRACTCandida glabrata, the second most frequent cause of candidiasis afterCandida albicans, is an emerging human fungal pathogen that is intrinsically drug tolerant. Currently, studies ofC. glabratagenes involved in drug tolerance are limited. Ada2, a component serving as a transcription adaptor of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, is required for antifungal drug tolerance and virulence inC. albicans. However, its roles inC. glabrataremain elusive. In this study, we found thatada2mutants demonstrated severe growth defects at 40°C but only mild defects at 37°C or 25°C. In addition,C. glabrata ada2mutants exhibited pleiotropic phenotypes, including susceptibility to three classes of antifungal drugs (i.e., azoles, echinocandins, and polyenes) and cell wall-perturbing agents but resistance to the endoplasmic reticulum stressor tunicamycin. According to RNA sequence analysis, the expression of 43 genes was downregulated and the expression of 442 genes was upregulated in theada2mutant compared to their expression in the wild type.C. glabrata ADA2, along with its downstream targetERG6, controls antifungal drug tolerance and cell wall integrity. Surprisingly,ada2mutants were hypervirulent in a murine model of systemic infection, possibly due to the upregulation of multiple adhesin-like genes, increased agar invasion, and overstimulation of murine tumor necrosis factor alpha production.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Brooke D. Esquivel ◽  
Jeffrey M. Rybak ◽  
Katherine S. Barker ◽  
Jarrod R. Fortwendel ◽  
P. David Rogers ◽  
...  

ABSTRACT This research analyzed six Aspergillus fumigatus genes encoding putative efflux proteins for their roles as transporters. The A. fumigatus genes abcA, abcC, abcF, abcG, abcH, and abcI were cloned into plasmids and overexpressed in a Saccharomyces cerevisiae strain in which the highly active endogenous ABC transporter gene PDR5 was deleted. The activity of each transporter was measured by efflux of rhodamine 6G and accumulation of alanine β-naphthylamide. The transporters AbcA, AbcC, and AbcF had the strongest efflux activities of these compounds. All of the strains with plasmid-expressed transporters had more efflux activity than did the PDR5-deleted background strain. We performed broth microdilution drug susceptibility testing and agar spot assays using an array of compounds and antifungal drugs to determine the transporter specificity and drug susceptibility of the strains. The transporters AbcC and AbcF showed the broadest range of substrate specificity, while AbcG and AbcH had the narrowest range of substrates. Strains expressing the AbcA, AbcC, AbcF, or AbcI transporter were more resistant to fluconazole than was the PDR5-deleted background strain. Strains expressing AbcC and AbcF were additionally more resistant to clotrimazole, itraconazole, ketoconazole, and posaconazole than was the background strain. Finally, we analyzed the expression levels of the genes by reverse transcription-quantitative PCR (RT-qPCR) in triazole-susceptible and -resistant A. fumigatus clinical isolates. All of these transporters are expressed at a measurable level, and transporter expression varied significantly between strains, demonstrating the high degree of phenotypic variation, plasticity, and divergence of which this species is capable. IMPORTANCE One mechanism behind drug resistance is altered export out of the cell. This work is a multifaceted analysis of membrane efflux transporters in the human fungal pathogen A. fumigatus. Bioinformatics evidence infers that there is a relatively large number of genes in A. fumigatus that encode ABC efflux transporters. However, very few of these transporters have been directly characterized and analyzed for their potential role in drug resistance. Our objective was to determine if these undercharacterized proteins function as efflux transporters and then to better define whether their efflux substrates include antifungal drugs used to treat fungal infections. We chose six A. fumigatus potential plasma membrane ABC transporter genes for analysis and found that all six genes produced functional transporter proteins. We used two fungal systems to look for correlations between transporter function and drug resistance. These transporters have the potential to produce drug-resistant phenotypes in A. fumigatus. Continued characterization of these and other transporters may assist in the development of efflux inhibitor drugs.


2019 ◽  
Vol 33 (1) ◽  
Author(s):  
Jean-Paul Latgé ◽  
Georgios Chamilos

SUMMARY Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.


Sign in / Sign up

Export Citation Format

Share Document