nutritional immunity
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 55)

H-INDEX

24
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Louisa Stewart ◽  
YoungJin Hong ◽  
Isabel Holmes ◽  
Samantha Firth ◽  
Jack Bolton ◽  
...  

The family of human salivary histidine-rich peptides known as histatins bind zinc (Zn) and copper (Cu), but whether they contribute to nutritional immunity by influencing Zn and/or Cu availability has not been examined. We hypothesised that histatin-5 (Hst5) limits Zn availability (and promotes bacterial Zn starvation) and/or raises Cu availability (and promotes bacterial Cu poisoning). To test this hypothesis, Group A Streptococcus (GAS), which colonises the human oropharynx, was used as a model bacterium. Contrary to our hypothesis, Hst5 did not strongly influence Zn availability. This peptide did not induce expression of Zn uptake genes in GAS, nor did it suppress growth of an ΔadcAI mutant strain that is impaired in Zn uptake. Equilibrium competition measurements confirmed that Hst5 binds Zn weakly and does not compete with the high-affinity Zn uptake protein AdcAI for binding Zn. By contrast, Hst5 bound Cu with a high affinity and strongly influenced Cu availability. However, contrary to our hypothesis, Hst5 did not promote Cu toxicity. Instead, this peptide suppressed expression of Cu-inducible genes in GAS, stopped intracellular accumulation of Cu, and rescued growth of a ΔcopA mutant strain that is impaired in Cu efflux in the presence of added Cu. These findings led us to propose a new role for Hst5 and salivary histatins as major Cu buffers in saliva that reduce the potential negative effects of Cu exposure to microbes. We speculate that histatins promote oral and oropharyngeal health by contributing to microbial homeostasis in these host niches.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Campbell W Gourlay ◽  
Fritz A Muhlschlegel ◽  
Daniel R Pentland

C. albicans is the predominant human fungal pathogen worldwide and frequently colonises medical devices, such as voice prosthesis, as a biofilm. It is a dimorphic yeast that can switch between yeast and hyphal forms in response to environmental cues, a property that is essential during biofilm establishment and maturation. One such cue is elevation of CO2 levels, as observed in exhaled breath for example. However, despite the clear medical relevance the effects of high CO2 levels on C. albicans biofilm growth has not been investigated to date. Here, we show that 5% CO2 significantly enhances each stage of the C. albicans biofilm forming process; from attachment through maturation to dispersion, via stimulation of the Ras/cAMP/PKA signalling pathway. Transcriptome analysis of biofilm formation under elevated CO2 conditions revealed the activation of key biofilm formation pathways governed by the central biofilm regulators Efg1, Brg1, Bcr1 and Ndt80. Biofilms grown in under elevated CO2 conditions also exhibit increases in azole resistance, tolerance to nutritional immunity and enhanced glucose uptake capabilities. We thus characterise the mechanisms by which elevated CO2 promote C. albicans biofilm formation. We also investigate the possibility of re-purposing drugs that can target the CO2 activated metabolic enhancements observed in C. albicans biofilms. Using this approach we can significantly reduce multi-species biofilm formation in a high CO2 environment and demonstrate a significant extension of the lifespan of voice prostheses in a patient trial. Our research demonstrates a bench to bedside approach to tackle Candida albicans biofilm formation.


2021 ◽  
Author(s):  
Jose A Lemos ◽  
Ling Lam ◽  
Debra Brunson ◽  
Ana L Flores-Mireles ◽  
Jonathan J Molina

Bacterial pathogens require a variety of micronutrients for growth, including trace metals such as iron, manganese, and zinc (Zn). Despite their relative abundance in host environments, access to these metals is severely restricted during infection due to host-mediated defense mechanisms collectively known as nutritional immunity. Despite a growing appreciation of the importance of Zn in host-pathogen interactions, the mechanisms of Zn homeostasis and the significance of Zn to the pathophysiology of E. faecalis, a major pathogen of nosocomial and community-associated infections, have not been investigated. Here, we show that E. faecalis encoded an ABC-type transporter AdcACB and an orphan substrate-binding lipoprotein AdcAII that work cooperatively to maintain Zn homeostasis. Simultaneous inactivation of adcA and adcAII or the entire adcACB operon led to significant reduction in intracellular Zn under Zn-restricted conditions, heightened sensitivity to Zn-chelating agents including human calprotectin, aberrant cell morphology, and impaired fitness in serum ex vivo. Additionally, inactivation of adcACB and adcAII significantly reduced bacterial tolerance towards cell envelope-targeting antibiotics, which may be associated to altered fatty acid abundance and species. Lastly, we show that the AdcACB/AdcAII system contributes to E. faecalis virulence in an invertebrate (Galleria mellonella) infection model and in two catheter-associated mouse infection models that recapitulate many of the host conditions associated with enterococcal human infections. Collectively, this report reveals that high-affinity Zn import is essential for the pathogenesis of E. faecalis indicating that the surface-associated AdcA and AdcAII lipoproteins are potential therapeutic targets.


2021 ◽  
Vol 118 (44) ◽  
pp. e2104073118
Author(s):  
Sarah L. Price ◽  
Viveka Vadyvaloo ◽  
Jennifer K. DeMarco ◽  
Amanda Brady ◽  
Phoenix A. Gray ◽  
...  

Yersinia pestis causes human plague and colonizes both a mammalian host and a flea vector during its transmission cycle. A key barrier to bacterial infection is the host’s ability to actively sequester key biometals (e.g., iron, zinc, and manganese) required for bacterial growth. This is referred to as nutritional immunity. Mechanisms to overcome nutritional immunity are essential virulence factors for bacterial pathogens. Y. pestis produces an iron-scavenging siderophore called yersiniabactin (Ybt) that is required to overcome iron-mediated nutritional immunity and cause lethal infection. Recently, Ybt has been shown to bind to zinc, and in the absence of the zinc transporter ZnuABC, Ybt improves Y. pestis growth in zinc-limited medium. These data suggest that, in addition to iron acquisition, Ybt may also contribute to overcoming zinc-mediated nutritional immunity. To test this hypothesis, we used a mouse model defective in iron-mediated nutritional immunity to demonstrate that Ybt contributes to virulence in an iron-independent manner. Furthermore, using a combination of bacterial mutants and mice defective in zinc-mediated nutritional immunity, we identified calprotectin as the primary barrier for Y. pestis to acquire zinc during infection and that Y. pestis uses Ybt to compete with calprotectin for zinc. Finally, we discovered that Y. pestis encounters zinc limitation within the flea midgut, and Ybt contributes to overcoming this limitation. Together, these results demonstrate that Ybt is a bona fide zinc acquisition mechanism used by Y. pestis to surmount zinc limitation during the infection of both the mammalian and insect hosts.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3368
Author(s):  
Sahar Golabi ◽  
Maryam Adelipour ◽  
Sara Mobarak ◽  
Maghsud Piri ◽  
Maryam Seyedtabib ◽  
...  

Vitamin D and zinc are important components of nutritional immunity. This study compared the serum concentrations of 25-hydroxyvitamin D (25(OH)D) and zinc in COVID-19 outpatients with those of potentially non-infected participants. The association of clinical symptoms with vitamin D and zinc status was also examined. A checklist and laboratory examination were applied to collect data in a cross-sectional study conducted on 53 infected outpatients with COVID-19 and 53 potentially non-infected participants. Serum concentration of 25(OH)D were not significantly lower in patients with moderate illness (19 ± 12 ng/mL) than patients with asymptomatic or mild illness (29 ± 18 ng/mL), with a trend noted for a lower serum concentration of 25(OH)D in moderate than asymptomatic or mild illness patients (p = 0.054). Infected patients (101 ± 18 µg/dL) showed a lower serum concentration of zinc than potentially non-infected participants (114 ± 13 µg/dL) (p = 0.01). Patients with normal (odds ratio (OR), 0.19; p ≤ 0.001) and insufficient (OR, 0.3; p = 0.007) vitamin D status at the second to seventh days of disease had decreased OR of general symptoms compared to patients with vitamin D deficiency. This study revealed the importance of 25(OH)D measurement to predict the progression of general and pulmonary symptoms and showed that infected patients had significantly lower zinc concentrations than potentially non-infected participants.


Author(s):  
Cassandra E. Nelson ◽  
Weiliang Huang ◽  
Emily M. Zygiel ◽  
Elizabeth M. Nolan ◽  
Maureen A. Kane ◽  
...  

Transition metal nutrients are critical for growth and infection by all pathogens, and the innate immune system withholds these metals from pathogens to limit their growth in a strategy termed “nutritional immunity.” While multimetal depletion by the host is appreciated, the majority of studies have focused on individual metals. Here, we use the innate immune protein calprotectin (CP), which complexes with several metals, including iron (Fe), zinc (Zn), and manganese (Mn), and the opportunistic pathogen Pseudomonas aeruginosa to investigate multimetal starvation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Samer Singh ◽  
Amita Diwaker ◽  
Brijesh P. Singh ◽  
Rakesh K. Singh

The impact of zinc (Zn) sufficiency/supplementation on COVID-19-associated mortality and incidence (SARS-CoV-2 infections) remains unknown. During an infection, the levels of free Zn are reduced as part of “nutritional immunity” to limit the growth and replication of pathogen and the ensuing inflammatory damage. Considering its key role in immune competency and frequently recorded deficiency in large sections of different populations, Zn has been prescribed for both prophylactic and therapeutic purposes in COVID-19 without any corroborating evidence for its protective role. Multiple trials are underway evaluating the effect of Zn supplementation on COVID-19 outcome in patients getting standard of care treatment. However, the trial designs presumably lack the power to identify negative effects of Zn supplementation, especially in the vulnerable groups of elderly and patients with comorbidities (contributing 9 out of 10 deaths; up to >8,000-fold higher mortality). In this study, we have analyzed COVID-19 mortality and incidence (case) data from 23 socially similar European populations with comparable confounders (population: 522.47 million; experiencing up to >150-fold difference in death rates) and at the matching stage of the pandemic (March 12 to June 26, 2020; first wave of COVID-19 incidence and mortality). Our results suggest a positive correlation between populations’ Zn-sufficiency status and COVID-19 mortality [r (23): 0.7893–0.6849, p-value < 0.0003] as well as incidence [r (23):0.8084–0.5658; p-value < 0.005]. The observed association is contrary to what would be expected if Zn sufficiency was protective in COVID-19. Thus, controlled trials or retrospective analyses of the adverse event patients’ data should be undertaken to correctly guide the practice of Zn supplementation in COVID-19.


mBio ◽  
2021 ◽  
Author(s):  
Mingi Kim ◽  
Do Young Kim ◽  
Woon Young Song ◽  
So Eun Park ◽  
Simone A. Harrison ◽  
...  

Acinetobacter baumannii has acquired antibiotic resistance at an alarming rate, and it is becoming a serious threat to society, particularly due to the paucity of effective treatment options. Acinetobactin is a siderophore of Acinetobacter baumannii , responsible for active iron supply, and it serves as a key virulence factor to counter host nutritional immunity during infection.


2021 ◽  
Author(s):  
Sandeep R. Kaushik ◽  
Sukanya Sahu ◽  
Hritusree Guha ◽  
Sourav Saha ◽  
Ranjit Das ◽  
...  

AbstractTuberculosis (TB) patients present dysregulated immunity, iron metabolism and anaemia of inflammation. In this study, circulatory cytokines, trace metals, and iron-related proteins (hepcidin, ferroportin, transferrin, DMT1, Nramp1, ferritin, ceruloplasmin, hemojuvelin, aconitase, transferring receptor) were monitored in case (active tuberculosis patients: ATB) and control (non-tuberculosis: NTB and healthy) study populations (n=72, male, 42.94 mean age (16-83)). Using serum elemental and cytokine levels, a partial least square discriminate analysis model (PLS-DA) was built and variables with a VIP score of >0.6 were selected as important markers. A biosignature of IL-13, IL-12(p70), IFN-γ, IL-10, IL-5, IL-18, IL-4, Selenium, and Aluminium clustered ATB away from controls. Interestingly, low iron and selenium levels, while high copper and aluminum levels were observed in ATB subjects. All the important serum cytokines were positively correlated in ATB subjects. A low abundance of transferrin, ferroportin, and hemojuvelin, while higher ferritin and ceruloplasmin levels explained an altered iron metabolism in ATB subjects which partially resolved upon completion of treatment. Further, the identified biosignature in TB patients, that explained anemia of inflammation, along with perturbed iron homeostasis could be useful targets for the development of host-directed adjunct therapeutics.


2021 ◽  
Author(s):  
Gilu Abraham ◽  
Angavai Swaminathan ◽  
Christopher Barlow ◽  
Thanh Nguyen ◽  
Tejasvini Bhuvan ◽  
...  

Abstract Macrophages can prevent infections from intracellular pathogens by restricting access to essential nutrients, termed nutritional immunity. With the exception of tryptophan depletion, it is unclear if other amino acids are similarly regulated in infected macrophages. Here, we show that the expression of nutrient transporters in Legionella-infected macrophages is modulated by the short chain fatty acid butyrate. Butyrate prevented the upregulation of the cystine/glutamate exchanger, Slc7a11, in macrophages infected with L. pneumophila, which decreased cellular cysteine levels. Butyrate and the Slc7a11 inhibitor erastin impaired intracellular Legionella replication in macrophages in vitro, with these being restored by exogenous supplementation with cysteine. Butyrate caused increased histone acetylation in infected macrophages, and pan- and class II HDAC inhibitors also restricted intracellular Legionella growth in a cysteine-dependent manner. Intranasal administration of butyrate reduced L. pneumophila lung burdens in mice. Our data suggest that butyrate alters the metabolism of macrophages to promote nutritional immunity by decreasing cysteine levels and that this can be harnessed to treat bacterial lung infections.


Sign in / Sign up

Export Citation Format

Share Document