scholarly journals Individual Matrix Metalloproteinases Control Distinct Transcriptional Responses in Airway Epithelial Cells Infected with Pseudomonas aeruginosa

2007 ◽  
Vol 75 (12) ◽  
pp. 5640-5650 ◽  
Author(s):  
Sean Y. Kassim ◽  
Sina A. Gharib ◽  
Brigham H. Mecham ◽  
Timothy P. Birkland ◽  
William C. Parks ◽  
...  

ABSTRACT Airway epithelium is the initial point of host-pathogen interaction in Pseudomonas aeruginosa infection, an important pathogen in cystic fibrosis and nosocomial pneumonia. We used global gene expression analysis to determine airway epithelial transcriptional responses dependent on matrilysin (matrix metalloproteinase 7 [MMP-7]) and stromelysin-2 (MMP-10), two MMPs induced by acute P. aeruginosa pulmonary infection. Extraction of differential gene expression (EDGE) analysis of gene expression changes in P. aeruginosa-infected organotypic tracheal epithelial cell cultures from wild-type, Mmp7 −/−, and Mmp10 −/− mice identified 2,091 matrilysin-dependent and 1,628 stromelysin-2-dependent genes that were differentially expressed. Key node network analysis showed that these MMPs controlled distinct gene expression programs involved in proliferation, cell death, immune responses, and signal transduction, among other host defense processes. Our results demonstrate discrete roles for these MMPs in regulating epithelial responses to Pseudomonas infection and show that a global genomics strategy can be used to assess MMP function.

2021 ◽  
Author(s):  
Arnav Gupta ◽  
Sarah K. Sasse ◽  
Lynn Sanford ◽  
Margaret A. Gruca ◽  
Robin D. Dowell ◽  
...  

AbstractTranscriptional responses to wildfire smoke, an increasingly important cause of human morbidity, are poorly understood. Here, using a combination of precision nuclear run-on sequencing (PRO-seq) and the assay for transposase-accessible chromatin using sequencing (ATAC-seq), we identify rapid and dynamic changes in transcription and chromatin structure in Beas-2B airway epithelial cells after exposure to wood smoke particles (WSP). By comparing 30 and 120 minutes of WSP exposure, we defined three distinct temporal patterns of transcriptional induction and chromatin responses to WSP. Whereas transcription of canonical targets of the aryl hydrocarbon receptor (AHR), such as CYP1A1 and AHRR, was robustly increased after 30 minutes of WSP exposure, transcription of these genes and associated enhancers returned to near baseline at 120 minutes. ChIP-qPCR assays and AHR knockdown confirmed a role for AHR in regulating these transcriptional responses, and we applied bioinformatics approaches to identify novel AHR-regulated pathways and targets including the DNA methyltransferase, DNMT3L, and its interacting factor, SPOCD1. Our analysis also defined a role for NFkB as a primary transcriptional effector of WSP-induced changes in gene expression. The kinetics of AHR- and NFkB-regulated responses to WSP were distinguishable based on the timing of both transcriptional responses and chromatin remodeling, with induction of several cytokines implicated in maintaining the NFkB response. In aggregate, our data establish a direct and primary role for AHR in mediating airway epithelial responses to WSP and identify crosstalk between AHR and NFkB signaling in controlling pro-inflammatory gene expression.


2006 ◽  
Vol 74 (10) ◽  
pp. 5893-5902 ◽  
Author(s):  
Eoin P. O'Grady ◽  
Heidi Mulcahy ◽  
Julie O'Callaghan ◽  
Claire Adams ◽  
Fergal O'Gara

ABSTRACT Pseudomonas aeruginosa is an important opportunistic pathogen which is capable of causing both acute and chronic infections in immunocompromised patients. Successful adaptation of the bacterium to its host environment relies on the ability of the organism to tightly regulate gene expression. RsmA, a small RNA-binding protein, controls the expression of a large number of virulence-related genes in P. aeruginosa, including those encoding the type III secretion system and associated effector proteins, with important consequences for epithelial cell morphology and cytotoxicity. In order to examine the influence of RsmA-regulated functions in the pathogen on gene expression in the host, we compared global expression profiles of airway epithelial cells in response to infection with P. aeruginosa PAO1 and an rsmA mutant. The RsmA-dependent response of host cells was characterized by significant changes in the global transcriptional pattern, including the increased expression of two Kruppel-like factors, KLF2 and KLF6. This increased expression was mediated by specific type III effector proteins. ExoS was required for the enhanced expression of KLF2, whereas both ExoS and ExoY were required for the enhanced expression of KLF6. Neither ExoT nor ExoU influenced the expression of the transcription factors. Additionally, the increased gene expression of KLF2 and KLF6 was associated with ExoS-mediated cytotoxicity. Therefore, this study identifies for the first time the human transcription factors KLF2 and KLF6 as targets of the P. aeruginosa type III exoenzymes S and Y, with potential importance in host cell death.


2004 ◽  
Vol 72 (9) ◽  
pp. 5433-5438 ◽  
Author(s):  
Anders Frisk ◽  
Jill R. Schurr ◽  
Guoshun Wang ◽  
Donna C. Bertucci ◽  
Luis Marrero ◽  
...  

ABSTRACT The transcriptional profile of Pseudomonas aeruginosa after interactions with primary normal human airway epithelial cells was determined using Affymetrix GeneChip technology. Gene expression profiles indicated that various genes involved in phosphate acquisition and iron scavenging were differentially regulated.


2020 ◽  
Vol 319 (2) ◽  
pp. L256-L265
Author(s):  
Thomas H. Hampton ◽  
Katja Koeppen ◽  
Laura Bashor ◽  
Bruce A. Stanton

Most quantitative PCR (qPCR) experiments report differential expression relative to the expression of one or more reference genes. Therefore, when experimental conditions alter reference gene expression, qPCR results may be compromised. Little is known about the magnitude of this problem in practice. We found that reference gene responses are common and hard to predict and that their stability should be demonstrated in each experiment. Our reanalysis of 15 airway epithelia microarray data sets retrieved from the National Center for Biotechnology Information (NCBI) identified no common reference gene that was reliable in all 15 studies. Reanalysis of published RNA sequencing (RNA-seq) data in which human bronchial epithelial cells (HBEC) were exposed to Pseudomonas aeruginosa revealed that minor experimental details, including bacterial strain, may alter reference gene responses. Direct measurement of 32 TaqMan reference genes in primary cultures of HBEC exposed to P. aeruginosa (strain PA14) demonstrated that choosing an unstable reference gene could make it impossible to observe statistically significant changes in IL8 gene expression. We found that reference gene instability is a general phenomenon and not limited to studies of airway epithelial cells. In a diverse compendium of 986 human microarray experiments retrieved from the NCBI, reference genes were differentially expressed in 42% of studies. Experimentally induced changes in reference gene expression ranged from 21% to 212%. These results highlight the importance of identifying adequate reference genes for each experimental system and documenting their response to treatment in each experiment. This will enhance experimental rigor and reproducibility in qPCR studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadzeya Marozkina ◽  
Laura Smith ◽  
Yi Zhao ◽  
Joe Zein ◽  
James F. Chmiel ◽  
...  

AbstractEndothelial hemoglobin (Hb)α regulates endothelial nitric oxide synthase (eNOS) biochemistry. We hypothesized that Hb could also be expressed and biochemically active in the ciliated human airway epithelium. Primary human airway epithelial cells, cultured at air–liquid interface (ALI), were obtained by clinical airway brushings or from explanted lungs. Human airway Hb mRNA data were from publically available databases; or from RT-PCR. Hb proteins were identified by immunoprecipitation, immunoblot, immunohistochemistry, immunofluorescence and liquid chromatography- mass spectrometry. Viral vectors were used to alter Hbβ expression. Heme and nitrogen oxides were measured colorimetrically. Hb mRNA was expressed in human ciliated epithelial cells. Heme proteins (Hbα, β, and δ) were detected in ALI cultures by several methods. Higher levels of airway epithelial Hbβ gene expression were associated with lower FEV1 in asthma. Both Hbβ knockdown and overexpression affected cell morphology. Hbβ and eNOS were apically colocalized. Binding heme with CO decreased extracellular accumulation of nitrogen oxides. Human airway epithelial cells express Hb. Higher levels of Hbβ gene expression were associated with airflow obstruction. Hbβ and eNOS were colocalized in ciliated cells, and heme affected oxidation of the NOS product. Epithelial Hb expression may be relevant to human airways diseases.


2015 ◽  
Vol 95 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Xiu-qin Yang ◽  
Liang Wang ◽  
Hai-tao Li ◽  
Di Liu

Yang, X.-q., Wang, L., Li, H.-t. and Liu, D. 2015. Immune responses of porcine airway epithelial cells to poly(I:C), a synthetic analogue of viral double-stranded RNA. Can. J. Anim. Sci. 95: 13–20. Swine respiratory disease (SRD) is one of the most economically important diseases affecting the pig industry. The main infectious agents that cause SRD are viruses, but the molecular pathogenesis of viral SRD has not been extensively studied. Here, using digital gene expression tag profiling, the global transcriptional responses to poly(I:C), a synthetic analogue of viral double-stranded RNA, was analyzed in porcine airway epithelial cells (PAECs). The profiling analysis revealed numerous differentially expressed genes (DEGs), including unknown sequences in the porcine nucleotide databases. Gene ontology enrichment analysis showed that DEGs were mainly enriched in response to stress (GO: 0006950), of which, defense response is one sub-process. Poly(I:C) challenge induced a general inflammation response as indicated by marked upregulation of a variety of pathogen recognition receptors, interferon-stimulated genes, proinflammatory cytokines, and chemokines, together with the significant downregulation of anti-inflammatory molecules. Furthermore, the antiapoptotic pathway was triggered, as demonstrated by the significant suppression of molecules involved in the induction of apoptosis, together with the significant stimulation of putative inhibitor of apoptosis. The results indicate that PAECs initiated defense against poly(I:C) challenge through the inflammation responses, whereas poly(I:C) can utilize antiapoptotic pathway to evade host defense.


Sign in / Sign up

Export Citation Format

Share Document