scholarly journals Shiga Toxin 1-Induced Inflammatory Response in Lipopolysaccharide-Sensitized Astrocytes Is Mediated by Endogenous Tumor Necrosis Factor Alpha

2009 ◽  
Vol 78 (3) ◽  
pp. 1193-1201 ◽  
Author(s):  
Verónica I. Landoni ◽  
Marcelo de Campos-Nebel ◽  
Pablo Schierloh ◽  
Cecilia Calatayud ◽  
Gabriela C. Fernandez ◽  
...  

ABSTRACT Hemolytic-uremic syndrome (HUS) is generally caused by Shiga toxin (Stx)-producing Escherichia coli. Endothelial dysfunction mediated by Stx is a central aspect in HUS development. However, inflammatory mediators such as bacterial lipopolysaccharide (LPS) and polymorphonuclear neutrophils (PMN) contribute to HUS pathophysiology by potentiating Stx effects. Acute renal failure is the main feature of HUS, but in severe cases, patients can develop neurological complications, which are usually associated with death. Although the mechanisms of neurological damage remain uncertain, alterations of the blood-brain barrier associated with brain endothelial injury is clear. Astrocytes (ASTs) are the most abundant inflammatory cells of the brain that modulate the normal function of brain endothelium and neurons. The aim of this study was to evaluate the effects of Stx type 1 (Stx1) alone or in combination with LPS in ASTs. Although Stx1 induced a weak inflammatory response, pretreatment with LPS sensitized ASTs to Stx1-mediated effects. Moreover, LPS increased the level of expression of the Stx receptor and its internalization. An early inflammatory response, characterized by the release of tumor necrosis factor alpha (TNF-α) and nitric oxide and PMN-chemoattractant activity, was induced by Stx1 in LPS-sensitized ASTs, whereas activation, evidenced by higher levels of glial fibrillary acid protein and cell death, was induced later. Furthermore, increased adhesion and PMN-mediated cytotoxicity were observed after Stx1 treatment in LPS-sensitized ASTs. These effects were dependent on NF-κB activation or AST-derived TNF-α. Our results suggest that TNF-α is a pivotal effector molecule that amplifies Stx1 effects on LPS-sensitized ASTs, contributing to brain inflammation and leading to endothelial and neuronal injury.

2021 ◽  
Vol 9 (A) ◽  
pp. 468-472
Author(s):  
Nuraiza Meutia ◽  
Lokot Donna Lubis ◽  
Eka Roina Megawati

BACKGROUND: Macrophages have been widely used for in vitro studies. Despite different types and doses of stimulatory agents that have been tested, there is no consensus for the method. AIM: This study was aimed to determine a sufficient dose of lipopolysaccharide (LPS) to stimulate inflammatory response in macrophages. METHODS: Whole blood was collected from four donors after written informed consent. The monocytes were isolated from peripheral blood mononuclear cells and stimulated with macrophage colony-stimulating factor, LPS, and Interferon-gamma for 6 days until differentiated into macrophages. The production of Tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) were quantified after 24-h further stimulation with 100 ng/mL and 2 μg/mL of LPS. RESULTS: Both doses increased TNF-α _production compare to their controls, but not statistically different (p > 0.05). There were also no differences in IL-6 production between treatments, 56.55 ± 32.30 pg/mL and 70.96 ± 65.08 pg/mL, respectively. CONCLUSION: A dose of 100 ng/mL of LPS was sufficient to stimulate inflammatory response in human monocyte-derived macrophages. A 24-h duration of macrophage stimulation was sufficient to observed the production TNF-α.


2001 ◽  
Vol 69 (3) ◽  
pp. 1889-1894 ◽  
Author(s):  
Patricia B. Eisenhauer ◽  
Prasoon Chaturvedi ◽  
Richard E. Fine ◽  
Andrew J. Ritchie ◽  
Jordan S. Pober ◽  
...  

ABSTRACT Hemolytic uremic syndrome (HUS) is associated with intestinal infection by enterohemorrhagic Escherichia coli strains that produce Shiga toxins. Globotriaosylceramide (Gb3) is the functional receptor for Shiga toxin, and tumor necrosis factor alpha (TNF-α) upregulates Gb3 in both human macrovascular umbilical vein endothelial cells and human microvascular brain endothelial cells. TNF-α treatment enhanced Shiga toxin binding and sensitivity to toxin. This upregulation was specific for Gb3 species containing normal fatty acids (NFA). Central nervous system (CNS) pathology in HUS could involve cytokine-stimulated elevation of endothelial NFA-Gb3 levels. Differential expression of Gb3 species may be a critical determinant of Shiga toxin toxicity and of CNS involvement in HUS.


2002 ◽  
Vol 70 (4) ◽  
pp. 2082-2089 ◽  
Author(s):  
Sherilyn Smith ◽  
Denny Liggitt ◽  
Elizabeth Jeromsky ◽  
Xiaoxia Tan ◽  
Shawn J. Skerrett ◽  
...  

ABSTRACT The local intrapulmonary role of tumor necrosis factor alpha (TNF-α) in a protective host response during acute and chronic infection with Mycobacterium tuberculosis is incompletely understood. To directly assess its role in the intrapulmonary immune response, we compared the responses of transgenic mice with a local pulmonary blockade of TNF-α (SPCTNFRIIFc mice) to mice with globally inhibited TNF-α (TNFRKO mice) and mice with normal immune systems (control mice). Consistent with previous reports, 100% of TNFRKO mice died by 28 days after aerosol infection, and these mice had markedly increased numbers of bacteria and widespread tissue necrosis in their lungs compared to controls. The median survival time of the SPCTNFRIIFc mice was 142 days, and 75% died by 180 days. Even though the numbers of bacteria in the lungs of the SPCTNFRIIFc mice were marginally increased compared to controls, these mice had a persistent neutrophilic inflammatory response and increased expression of proinflammatory cytokines (interleukin-1α/β [IL-1α/β], IL-18, gamma interferon, IL-6, and macrophage migration inhibitory factor) and chemokines (eotaxin, macrophage inflammatory protein 1α/β, gamma interferon-inducible protein 10, macrophage chemotaxic protein 1, and TCA-3) in their lungs. These studies with the SPCTNFRIIFc mice provide direct evidence for the local importance of TNF-α in the proper regulation of host defense to M. tuberculosis. The studies also suggest that when the local actions of TNF-α are selectively impaired in the lungs, tissue destruction and death ensue, at least in part, due to persistent expression of proinflammatory mediators that would normally be downregulated.


Author(s):  
Kai You ◽  
Hui Gu ◽  
Zhengwei Yuan ◽  
Xuewen Xu

Tumor necrosis factor alpha (TNF-α) plays important roles in processes such as immunomodulation, fever, inflammatory response, inhibition of tumor formation, and inhibition of viral replication. TNF-α and its receptors are ubiquitously expressed in developing organs and they regulate the survival, proliferation, and apoptosis of embryonic stem cells (ESCs) and progenitor cells. TNF-α is an important inflammatory factor that also regulates the inflammatory response during organogenesis, and its cytotoxic effects can interfere with normal developmental processes, even leading to the onset of diseases. This review summarizes the various roles of TNF-α in organogenesis in terms of its secreting pattern, concentration-dependent activities, and interactions with other signaling pathways. We also explored new potential functions of TNF-α.


2020 ◽  
Author(s):  
Wenna Gao ◽  
Ruilin Zhu ◽  
liu yang

Background: Mounting evidence has suggested tumor necrosis factor-alpha (TNF-α) can promote the development of diabetic retinopathy (DR), and TNF-α gene variants may influence DR risk. However, the results are quite different. Objectives: To comprehensively address this issue, we performed the meta-analysis to evaluate the association of TNF-α-308 G/A and -238 G/A polymorphism with DR. Method: Data were retrieved in a systematic manner and analyzed using STATA Statistical Software. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations. Allelic and genotypic comparisons between cases and controls were evaluated. Results: For the TNF-α-308 G/A polymorphism, overall analysis suggested a marginal association with DR [the OR(95%CI) of (GA versus GG), (GA + AA) versus GG, and (A versus G) are 1.21(1.04, 1.41), 1.20(1.03, 1.39), and 1.14(1.01, 1.30), respectively]. And the subgroup analysis indicated an enhanced association among the European population. For the TNF-α-238 G/A polymorphism, there was mild correlation in the entire group [the OR(95%CI) of (GA versus GG) is 1.55(1.14,2.11) ], which was strengthened among the Asian population. Conclusion: The meta-analysis suggested that -308 A and -238 A allele in TNF-α gene potentially increased DR risk and showed a discrepancy in different ethnicities.


2016 ◽  
Vol 36 (9) ◽  
pp. 1342-1353 ◽  
Author(s):  
Gil Diamant ◽  
Tal Eisenbaum ◽  
Dena Leshkowitz ◽  
Rivka Dikstein

The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) modulates the expression of many genes, primarily through activation of NF-κB. Here, we examined the global effects of the elongation factor Spt5 on nascent and mature mRNAs of TNF-α-induced cells using chromatin and cytosolic subcellular fractions. We identified several classes of TNF-α-induced genes controlled at the level of transcription, splicing, and chromatin retention. Spt5 was found to facilitate splicing and chromatin release in genes displaying high induction rates. Further analysis revealed striking effects of TNF-α on the splicing of 25% of expressed genes; the vast majority were not transcriptionally induced. Splicing enhancement of noninduced genes by TNF-α was transient and independent of NF-κB. Investigating the underlying basis, we found that Spt5 is required for the splicing facilitation of the noninduced genes. In line with this, Spt5 interacts with Sm core protein splicing factors. Furthermore, following TNF-α treatment, levels of RNA polymerase II (Pol II) but not Spt5 are reduced from the splicing-induced genes, suggesting that these genes become enriched with a Pol II-Spt5 form. Our findings revealed the Pol II-Spt5 complex as a highly competent coordinator of cotranscriptional splicing.


2006 ◽  
Vol 26 (24) ◽  
pp. 9244-9255 ◽  
Author(s):  
Xiaolan Feng ◽  
Shirin Bonni ◽  
Karl Riabowol

ABSTRACT ING proteins affect apoptosis, growth, and DNA repair by transducing stress signals such as DNA damage, binding histones, and subsequently regulating chromatin structure and p53 activity. p53 target genes, including the p21 cyclin-dependent kinase inhibitor and Bax, an inducer of apoptosis, are regulated by ING proteins. To identify additional targets downstream of p33ING1 and p32ING2, cDNA microarrays were performed on phenotypically normal human primary fibroblasts. The 0.36% of genes affected by ING proteins in primary fibroblasts were distinct from targets seen in established cells and included the HSP70 heat shock gene, whose promoter was specifically induced >10-fold. ING1-induced expression of HSP70 shifted cells from survival to a death pathway in response to tumor necrosis factor alpha (TNF-α), and p33ING1b protein showed synergy with TNF-α in inducing apoptosis, which correlated with reduced NF-κB-dependent transcription. These findings are consistent with previous reports that HSP70 promotes TNF-α-mediated apoptosis by binding I-κΒ kinase gamma and impairing NF-κB survival signaling. Induction of HSP70 required the amino terminus of ING1b but not the plant homeodomain region that was recently identified as a histone binding domain. Regulation of HSP70 gene expression by the ING tumor suppressors provides a novel link between the INGs and the stress-regulated NF-κB survival pathway important in hypoxia and angiogenesis.


2001 ◽  
Vol 69 (11) ◽  
pp. 7169-7172 ◽  
Author(s):  
Martin M. Dinges ◽  
Patrick M. Schlievert

ABSTRACT Host susceptibility to lipopolysaccharide (LPS) is correlated with the levels of circulating tumor necrosis factor alpha (TNF-α) that develop in response to circulating LPS. Mice are resistant, relative to rabbits, to the lethal effects of LPS. This study indicates that mice and rabbits are equally sensitive to the lethal effects of circulating TNF-α but that mice are more resistant than rabbits to the induction of circulating TNF-α by LPS.


2001 ◽  
Vol 69 (8) ◽  
pp. 4823-4830 ◽  
Author(s):  
Véronique Jubier-Maurin ◽  
Rose-Anne Boigegrain ◽  
Axel Cloeckaert ◽  
Antoine Gross ◽  
Maria-Teresa Alvarez-Martinez ◽  
...  

ABSTRACT Brucella spp. can establish themselves and cause disease in humans and animals. The mechanisms by whichBrucella spp. evade the antibacterial defenses of their host, however, remain largely unknown. We have previously reported that live brucellae failed to induce tumor necrosis factor alpha (TNF-α) production upon human macrophage infection. This inhibition is associated with a nonidentified protein that is released into culture medium. Outer membrane proteins (OMPs) of gram-negative bacteria have been shown to modulate macrophage functions, including cytokine production. Thus, we have analyzed the effects of two major OMPs (Omp25 and Omp31) of Brucella suis 1330 (wild-type [WT] B. suis) on TNF-α production. For this purpose, omp25and omp31 null mutants of B. suis(Δomp25 B. suis and Δomp31 B. suis, respectively) were constructed and analyzed for the ability to activate human macrophages to secrete TNF-α. We showed that, in contrast to WTB. suis or Δomp31 B. suis, Δomp25 B. suis induced TNF-α production when phagocytosed by human macrophages. The complementation of Δomp25 B. suis with WT omp25 (Δomp25-omp25 B. suis mutant) significantly reversed this effect: Δomp25-omp25 B. suis-infected macrophages secreted significantly less TNF-α than did macrophages infected with the Δomp25 B. suismutant. Furthermore, pretreatment of WT B. suis with an anti-Omp25 monoclonal antibody directed against an epitope exposed at the surface of the bacteria resulted in substancial TNF-α production during macrophage infection. These observations demonstrated that Omp25 of B. suis is involved in the negative regulation of TNF-α production upon infection of human macrophages.


Sign in / Sign up

Export Citation Format

Share Document