scholarly journals Compartmentalization of the Broad-Range Phospholipase C Activity to the Spreading Vacuole Is Critical for Listeria monocytogenes Virulence

2006 ◽  
Vol 75 (1) ◽  
pp. 44-51 ◽  
Author(s):  
P. S. Marie Yeung ◽  
Yoojin Na ◽  
Amanda J. Kreuder ◽  
Hélène Marquis

ABSTRACT Listeria monocytogenes is a bacterial pathogen that multiplies in the cytosol of host cells and spreads directly from cell to cell by using an actin-based mechanism of motility. The broad-range phospholipase C (PC-PLC) of L. monocytogenes contributes to bacterial escape from vacuoles formed upon cell-to-cell spread. PC-PLC is made as an inactive proenzyme whose activation requires cleavage of an N-terminal propeptide. During infection, PC-PLC is activated specifically in acidified vacuoles. To assess the importance of compartmentalizing PC-PLC activity during infection, we created a mutant that makes constitutively active PC-PLC (the plcBΔpro mutant). Results from intracellular growth and cell-to-cell spread assays showed that the plcBΔpro mutant was sensitive to gentamicin, suggesting that unregulated PC-PLC activity causes damage to host cell membranes. This was confirmed by the observation of a twofold increase in staining of live infected cells by a non-membrane-permeant DNA fluorescent dye. However, membrane damage was not sufficient to cause cell lysis and was dependent on bacterial cell-to-cell spread, suggesting that damage was localized to bacterium-containing filopodia. Using an in vivo competitive infection assay, we observed that the plcBΔpro mutant was outcompeted up to 200-fold by the wild-type strain in BALB/c mice. Virulence attenuation was greater when mice were infected orally than when they were infected intravenously, presumably because the plcBΔpro mutant was initially outcompeted in the intestines, reducing the number of mutant bacteria reaching the liver and spleen. Together, these results emphasize the importance for L. monocytogenes virulence of compartmentalizing the activity of PC-PLC during infection.

2020 ◽  
Author(s):  
Ying Li ◽  
Fei Liu ◽  
Jiangjiang Zhang ◽  
Xiaoye Liu ◽  
Peihong Xiao ◽  
...  

<p><a>Bacteria infected cells acting as “Trojan horses” not only protect bacteria from antibiotic therapies and immune clearance, but also increase the dissemination of pathogens from the initial sites of infection. Antibiotics are hard and insufficient to treat such hidden intracellular bacteria, especially the multidrug</a>-resistant (MDR) bacteria. Herein, aggregation-induced emission luminogens (AIEgens) such as TBPs showed potent broad-spectrum bactericidal activity against both <a></a><a>extracellular and intracellular</a> Gram-positive pathogens at low-dose levels. TBPs triggered reactive oxygen species (ROS)-mediated membrane damage to kill bacteria, regardless of light irradiation. Additionally, such AIEgens activated mitochondria dependent autophagy to eliminate intracellular bacteria in host cells. Compared to the routinely used vancomycin in clinics, TBPs showed comparable efficacy against methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) <i>in vivo</i>. Our studies demonstrate that AIEgens are promising new agents for the treatment of MDR bacteria associated infections.</p>


1997 ◽  
Vol 137 (6) ◽  
pp. 1381-1392 ◽  
Author(s):  
Hélène Marquis ◽  
Howard Goldfine ◽  
Daniel A. Portnoy

Listeria monocytogenes is a facultative intracellular bacterial pathogen that spreads cell to cell without exposure to the extracellular environment. Bacterial cell-to-cell spread is mediated in part by two secreted bacterial phospholipases C (PLC), a broad spectrum PLC (PC-PLC) and a phosphatidylinositolspecific PLC (PI-PLC). PI-PLC is secreted in an active state, whereas PC-PLC is secreted as an inactive proenzyme (proPC-PLC) whose activation is mediated in vitro by an L. monocytogenes metalloprotease (Mpl). Analysis of PI-PLC, PC-PLC, and Mpl single and double mutants revealed that Mpl also plays a role in the spread of an infection, but suggested that proPC-PLC has an Mpl-independent activation pathway. Using biochemical and microscopic approaches, we describe three intracellular proteolytic pathways regulating PCPLC activity. Initially, proPC-PLC secreted in the cytosol of infected cells was rapidly degraded in a proteasome-dependent manner. Later during infection, PCPLC colocalized with bacteria in lysosome-associated membrane protein 1–positive vacuoles. Activation of proPC-PLC in vacuoles was mediated by Mpl and an Mpl-independent pathway, the latter being sensitive to inhibitors of cysteine proteases. Lastly, proPC-PLC activation by either pathway was sensitive to bafilomycin A1, a specific inhibitor of vacuolar ATPase, suggesting that activation was dependent on acidification of the vacuolar compartment. These results are consistent with a model in which proPC-PLC activation is compartment specific and controlled by a combination of bacterial and host factors.


2009 ◽  
Vol 77 (7) ◽  
pp. 2612-2623 ◽  
Author(s):  
Francis Alonzo ◽  
Gary C. Port ◽  
Min Cao ◽  
Nancy E. Freitag

ABSTRACT Listeria monocytogenes is an intracellular bacterial pathogen whose virulence depends on the regulated expression of numerous secreted bacterial factors. As for other gram-positive bacteria, many proteins secreted by L. monocytogenes are translocated across the bacterial membrane in an unfolded state to the compartment existing between the membrane and the cell wall. This compartment presents a challenging environment for protein folding due to its high density of negative charge, high concentrations of cations, and low pH. We recently identified PrsA2 as a gene product required for L. monocytogenes virulence. PrsA2 was identified based on its increased secretion by strains containing a mutationally activated form of prfA, the key regulator of L. monocytogenes virulence gene expression. The prsA2 gene product is one of at least two predicted peptidyl-prolyl cis/trans-isomerases encoded by L. monocytogenes; these proteins function as posttranslocation protein chaperones and/or foldases. In this study, we demonstrate that PrsA2 plays a unique and important role in L. monocytogenes pathogenesis by promoting the activity and stability of at least two critical secreted virulence factors: listeriolysin O (LLO) and a broad-specificity phospholipase. Loss of PrsA2 activity severely attenuated virulence in mice and impaired bacterial cell-to-cell spread in host cells. In contrast, mutants lacking prsA1 resembled wild-type bacteria with respect to intracellular growth and cell-to-cell spread as well as virulence in mice. PrsA2 is thus distinct from PrsA1 in its unique requirement for the stability and full activity of L. monocytogenes-secreted factors that contribute to host infection.


2005 ◽  
Vol 73 (10) ◽  
pp. 6639-6646 ◽  
Author(s):  
Zhengyu Wei ◽  
Pamela Schnupf ◽  
Mathilde A. Poussin ◽  
Lauren A. Zenewicz ◽  
Hao Shen ◽  
...  

ABSTRACT Two virulence factors of Listeria monocytogenes, listeriolysin O (LLO) and phosphatidylinositol-specific phospholipase C (PI-PLC), mediate escape of this pathogen from the phagocytic vacuole of macrophages, thereby allowing the bacterium access to the host cell cytosol for growth and spread to neighboring cells. We characterized their orthologs from Bacillus anthracis by expressing them in L. monocytogenes and characterizing their contribution to bacterial intracellular growth and cell-to-cell spread. We generated a series of L. monocytogenes strains expressing B. anthracis anthrolysin O (ALO) and PI-PLC in place of LLO and L. monocytogenes PI-PLC, respectively. We found that ALO was active at both acidic and neutral pH and could functionally replace LLO in mediating escape from a primary vacuole; however, ALO exerted a toxic effect on the host cell by damaging the plasma membrane. B. anthracis PI-PLC, unlike the L. monocytogenes ortholog, had high activity on glycosylphosphatidylinositol-anchored proteins. L. monocytogenes expressing B. anthracis PI-PLC showed significantly decreased efficiencies of escape from a phagosome and in cell-to-cell spread. We further compared the level of cytotoxicity to host cells by using mutant strains expressing ALO in combination either with L. monocytogenes PI-PLC or with B. anthracis PI-PLC. The results demonstrated that the mutant strain expressing the combination of ALO and B. anthracis PI-PLC caused less damage to host cells than the strain expressing ALO and L. monocytogenes PI-PLC. The present study indicates that LLO and L. monocytogenes PI-PLC has adapted for L. monocytogenes intracellular growth and virulence and suggests that ALO and B. anthracis PI-PLC may have a role in B. anthracis pathogenesis.


2019 ◽  
Author(s):  
Allen G. Sanderlin ◽  
Cassandra Vondrak ◽  
Arianna J. Scricco ◽  
Indro Fedrigo ◽  
Vida Ahyong ◽  
...  

AbstractListeria monocytogenes is a human bacterial pathogen that disseminates through host tissues using a process called cell-to-cell spread. This critical yet understudied virulence strategy resembles a vesicular form of intercellular trafficking that allows L. monocytogenes to move between host cells without escaping the cell. Interestingly, eukaryotic cells can also directly exchange cellular components via intercellular communication pathways (e.g. trans-endocytosis) using cell-cell adhesion, membrane trafficking, and membrane remodeling proteins. Therefore, we hypothesized that L. monocytogenes would hijack these types of host proteins during spread. Using a focused RNAi screen, we identified 22 host genes that are important for L. monocytogenes spread. We then found that caveolins (CAV1 and CAV2) and the membrane sculpting F-BAR protein PACSIN2 promote L. monocytogenes protrusion engulfment during spread, and that PACSIN2 specifically localized to protrusions. Overall, our study demonstrates that host intercellular communication pathways may be co-opted during bacterial spread and that specific trafficking and membrane remodeling proteins promote bacterial protrusion resolution.SummaryThe human bacterial pathogen Listeria monocytogenes disseminates through host tissues using a process called cell-to-cell spread. In this study, Sanderlin et al., discover that host proteins that normally regulate membrane trafficking and membrane remodeling in uninfected settings are also co-opted by Listeria to promote spread.


2020 ◽  
Author(s):  
Ying Li ◽  
Fei Liu ◽  
Jiangjiang Zhang ◽  
Xiaoye Liu ◽  
Peihong Xiao ◽  
...  

<p><a>Bacteria infected cells acting as “Trojan horses” not only protect bacteria from antibiotic therapies and immune clearance, but also increase the dissemination of pathogens from the initial sites of infection. Antibiotics are hard and insufficient to treat such hidden intracellular bacteria, especially the multidrug</a>-resistant (MDR) bacteria. Herein, aggregation-induced emission luminogens (AIEgens) such as TBPs showed potent broad-spectrum bactericidal activity against both <a></a><a>extracellular and intracellular</a> Gram-positive pathogens at low-dose levels. TBPs triggered reactive oxygen species (ROS)-mediated membrane damage to kill bacteria, regardless of light irradiation. Additionally, such AIEgens activated mitochondria dependent autophagy to eliminate intracellular bacteria in host cells. Compared to the routinely used vancomycin in clinics, TBPs showed comparable efficacy against methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) <i>in vivo</i>. Our studies demonstrate that AIEgens are promising new agents for the treatment of MDR bacteria associated infections.</p>


1994 ◽  
Vol 180 (6) ◽  
pp. 2209-2218 ◽  
Author(s):  
G Ikonomidis ◽  
Y Paterson ◽  
F J Kos ◽  
D A Portnoy

Listeria monocytogenes is a facultative intracellular pathogen that grows in the cytoplasm of infected host cells. We examined the capacity of L. monocytogenes to introduce influenza nucleoprotein (NP) into the class I pathway of antigen presentation both in vitro and in vivo. Recombinant L. monocytogenes secreting a fusion of listeriolysin O and NP (LLO-NP) targeted infected cells for lysis by NP-specific class I-restricted cytotoxic T cells. Antigen presentation occurred in the context of three different class I haplotypes in vitro. A hemolysin-negative L. monocytogenes strain expressing LLO-NP was able to present in a class II-restricted manner. However, it failed to target infected cells for lysis by CD8+ T cells, indicating that hemolysin-dependent bacterial escape from the vacuole is necessary for class I presentation in vitro. Immunization of mice with a recombinant L. monocytogenes strain that stably expressed and secreted LLO-NP induced NP-specific CD8+ cytotoxic T lymphocytes. These studies have implications for the use of L. monocytogenes to deliver potentially any antigen to the class I pathway in vivo.


2005 ◽  
Vol 73 (9) ◽  
pp. 5789-5798 ◽  
Author(s):  
Xinyan Zhao ◽  
Zhongxia Li ◽  
Baiyan Gu ◽  
Fred R. Frankel

ABSTRACT Listeria monocytogenes is a bacterial pathogen that elicits a strong cellular immune response and thus has potential use as a vaccine vector. An attenuated strain, L. monocytogenes dal dat, produced by deletion of two genes (dal and dat) used for d-alanine synthesis, induces cytotoxic T lymphocytes and protective immunity in mice following infection in the presence of d-alanine. In order to obviate the dependence of L. monocytogenes dal dat on supplemental d-alanine yet retain its attenuation and immunogenicity, we explored mechanisms to allow transient endogenous synthesis of the amino acid. Here, we report on a derivative strain, L. monocytogenes dal dat/pRRR, that expresses a dal gene and synthesizes d-alanine under highly selective conditions. We constructed the suicide plasmid pRRR carrying a dal gene surrounded by two res1 sites and a resolvase gene, tnpR, which acts at the res1 sites. The resolvase gene is regulated by a promoter activated upon exposure to host cell cytosol. L. monocytogenes dal dat/pRRR was thus able to grow in liquid culture and to infect host cells without d-alanine supplementation. However, after infection of these cells, resolvase-mediated excision of the dal gene resulted in strong down-regulation of racemase expression. As a result, this system allowed only transient growth of L. monocytogenes dal dat/pRRR in infected cells and survival in animals for only 2 to 3 days. Nevertheless, mice immunized with L. monocytogenes dal dat/pRRR generated listeriolysin O-specific effector and memory CD8+ T cells and were protected against lethal challenge by wild-type Listeria. This vector may be an attractive vaccine candidate for the induction of protective cellular immune responses.


2022 ◽  
Author(s):  
Maren Rudolph ◽  
Alexander Carsten ◽  
Martin Aepfelbacher ◽  
Manuel Wolters

Yersinia enterocolitica employs a type three secretion system (T3SS) to translocate immunosuppressive effector proteins into host cells. To this end, the T3SS assembles a translocon/pore complex composed of the translocator proteins YopB and YopD in host cell membranes serving as an entry port for the effectors. The translocon is formed in a Yersinia -containing pre-phagosomal compartment that is connected to the extracellular space. As the phagosome matures, the translocon and the membrane damage it causes are recognized by the cell-autonomous immune system. We infected cells in the presence of fluorophore-labeled ALFA-tag-binding nanobodies with a Y. enterocolitica strain expressing YopD labeled with an ALFA-tag. Thereby we could record the integration of YopD into translocons and its intracellular fate in living host cells. YopD was integrated into translocons around 2 min after uptake of the bacteria into a phosphatidylinositol-4,5-bisphosphate enriched pre-phagosomal compartment and remained there for 27 min on average. Damaging of the phagosomal membrane as visualized with recruitment of GFP-tagged galectin-3 occurred in the mean around 14 min after translocon formation. Shortly after recruitment of galectin-3, guanylate-binding protein 1 (GBP-1) was recruited to phagosomes, which was accompanied by a decrease in the signal intensity of translocons, suggesting their degradation. In sum, we were able for the first time to film the spatiotemporal dynamics of Yersinia T3SS translocon formation and degradation and its sensing by components of the cell-autonomous immune system.


Sign in / Sign up

Export Citation Format

Share Document