scholarly journals Differential activation of resident macrophage subsets with two sources of lymphokine preparations.

1983 ◽  
Vol 40 (1) ◽  
pp. 177-183 ◽  
Author(s):  
D R Tabor ◽  
P H Saluk
2021 ◽  
Vol 218 (12) ◽  
Author(s):  
Nan Zhang ◽  
Seung Hyeon Kim ◽  
Anastasiia Gainullina ◽  
Emma C. Erlich ◽  
Emily J. Onufer ◽  
...  

Two resident macrophage subsets reside in peritoneal fluid. Macrophages also reside within mesothelial membranes lining the peritoneal cavity, but they remain poorly characterized. Here, we identified two macrophage populations (LYVE1hi MHC IIlo-hi CX3CR1gfplo/− and LYVE1lo/− MHC IIhi CX3CR1gfphi subsets) in the mesenteric and parietal mesothelial linings of the peritoneum. These macrophages resembled LYVE1+ macrophages within surface membranes of numerous organs. Fate-mapping approaches and analysis of newborn mice showed that LYVE1hi macrophages predominantly originated from embryonic-derived progenitors and were controlled by CSF1 made by Wt1+ stromal cells. Their gene expression profile closely overlapped with ovarian tumor-associated macrophages previously described in the omentum. Indeed, syngeneic epithelial ovarian tumor growth was strongly reduced following in vivo ablation of LYVE1hi macrophages, including in mice that received omentectomy to dissociate the role from omental macrophages. These data reveal that the peritoneal compartment contains at least four resident macrophage populations and that LYVE1hi mesothelial macrophages drive tumor growth independently of the omentum.


2020 ◽  
Author(s):  
Livia Lacerda Mariano ◽  
Matthieu Rousseau ◽  
Hugo Varet ◽  
Rachel Legendre ◽  
Rebecca Gentek ◽  
...  

SummaryResident macrophages are abundant in the bladder, playing key roles in immunity to uropathogens. Yet, whether they are heterogeneous, where they come from, and how they respond to infection remain largely unknown. We identified two macrophage subsets in mouse bladders, MacM in the muscle and MacL in the lamina propria, with distinct protein expression and transcriptomes. Using a urinary tract infection model, we validated our transcriptomic analyses, finding that MacM macrophages phagocytosed more bacteria and polarized to a more anti-inflammatory profile, whereas the MacL subset died rapidly during infection. During resolution, monocyte-derived cells contributed to tissue-resident macrophage pools and both subsets acquired transcriptional profiles distinct from naïve macrophages. Depletion of these altered macrophages resulted in the induction of a type 1 biased immune response to a second urinary tract infection, improving bacterial clearance. Our study uncovers the biology of resident macrophages and their response to an exceedingly common infection in a largely overlooked organ, the bladder.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shoutang Wang ◽  
Deshan Ren ◽  
Brahim Arkoun ◽  
Anna-Lila Kaushik ◽  
Gabriel Matherat ◽  
...  

AbstractDuring ontogeny, macrophage populations emerge in the Yolk Sac (YS) via two distinct progenitor waves, prior to hematopoietic stem cell development. Macrophage progenitors from the primitive/”early EMP” and transient-definitive/”late EMP” waves both contribute to various resident primitive macrophage populations in the developing embryonic organs. Identifying factors that modulates early stages of macrophage progenitor development may lead to a better understanding of defective function of specific resident macrophage subsets. Here we show that YS primitive macrophage progenitors express Lyl-1, a bHLH transcription factor related to SCL/Tal-1. Transcriptomic analysis of YS macrophage progenitors indicate that primitive macrophage progenitors present at embryonic day 9 are clearly distinct from those present at later stages. Disruption of Lyl-1 basic helix-loop-helix domain leads initially to an increased emergence of primitive macrophage progenitors, and later to their defective differentiation. These defects are associated with a disrupted expression of gene sets related to embryonic patterning and neurodevelopment. Lyl-1-deficiency also induce a reduced production of mature macrophages/microglia in the early brain, as well as a transient reduction of the microglia pool at midgestation and in the newborn. We thus identify Lyl-1 as a critical regulator of primitive macrophages and microglia development, which disruption may impair resident-macrophage function during organogenesis.


2020 ◽  
Vol 6 (48) ◽  
pp. eabc5739
Author(s):  
Livia Lacerda Mariano ◽  
Matthieu Rousseau ◽  
Hugo Varet ◽  
Rachel Legendre ◽  
Rebecca Gentek ◽  
...  

Resident macrophages are abundant in the bladder, playing key roles in immunity to uropathogens. Yet, whether they are heterogeneous, where they come from, and how they respond to infection remain largely unknown. We identified two macrophage subsets in mouse bladders, MacM in muscle and MacL in the lamina propria, each with distinct protein expression and transcriptomes. Using a urinary tract infection model, we validated our transcriptomic analyses, finding that MacM macrophages phagocytosed more bacteria and polarized to an anti-inflammatory profile, whereas MacL macrophages died rapidly during infection. During resolution, monocyte-derived cells contributed to tissue-resident macrophage pools and both subsets acquired transcriptional profiles distinct from naïve macrophages. Macrophage depletion resulted in the induction of a type 1–biased immune response to a second urinary tract infection, improving bacterial clearance. Our study uncovers the biology of resident macrophages and their responses to an exceedingly common infection in a largely overlooked organ, the bladder.


2022 ◽  
Vol 7 (67) ◽  
Author(s):  
Sarah A. Dick ◽  
Anthony Wong ◽  
Homaira Hamidzada ◽  
Sara Nejat ◽  
Robert Nechanitzky ◽  
...  

Tsitologiya ◽  
2018 ◽  
Vol 6o (4) ◽  
pp. 252-261 ◽  
Author(s):  
E.E. Ivanyuk ◽  
◽  
S.V. Nadezhdin ◽  
L.A. Pokrovskaya ◽  
V.V. Shupletsova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document