LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor growth

2021 ◽  
Vol 218 (12) ◽  
Author(s):  
Nan Zhang ◽  
Seung Hyeon Kim ◽  
Anastasiia Gainullina ◽  
Emma C. Erlich ◽  
Emily J. Onufer ◽  
...  

Two resident macrophage subsets reside in peritoneal fluid. Macrophages also reside within mesothelial membranes lining the peritoneal cavity, but they remain poorly characterized. Here, we identified two macrophage populations (LYVE1hi MHC IIlo-hi CX3CR1gfplo/− and LYVE1lo/− MHC IIhi CX3CR1gfphi subsets) in the mesenteric and parietal mesothelial linings of the peritoneum. These macrophages resembled LYVE1+ macrophages within surface membranes of numerous organs. Fate-mapping approaches and analysis of newborn mice showed that LYVE1hi macrophages predominantly originated from embryonic-derived progenitors and were controlled by CSF1 made by Wt1+ stromal cells. Their gene expression profile closely overlapped with ovarian tumor-associated macrophages previously described in the omentum. Indeed, syngeneic epithelial ovarian tumor growth was strongly reduced following in vivo ablation of LYVE1hi macrophages, including in mice that received omentectomy to dissociate the role from omental macrophages. These data reveal that the peritoneal compartment contains at least four resident macrophage populations and that LYVE1hi mesothelial macrophages drive tumor growth independently of the omentum.

2020 ◽  
Vol 14 (10) ◽  
pp. 2436-2454
Author(s):  
Arpita Kulshrestha ◽  
Gajendra K. Katara ◽  
Safaa A. Ibrahim ◽  
Valerie E. Riehl ◽  
Sylvia Schneiderman ◽  
...  

2014 ◽  
Vol 204 (2) ◽  
pp. 247-263 ◽  
Author(s):  
Christine Jean ◽  
Xiao Lei Chen ◽  
Ju-Ock Nam ◽  
Isabelle Tancioni ◽  
Sean Uryu ◽  
...  

Pharmacological focal adhesion kinase (FAK) inhibition prevents tumor growth and metastasis, via actions on both tumor and stromal cells. In this paper, we show that vascular endothelial cadherin (VEC) tyrosine (Y) 658 is a target of FAK in tumor-associated endothelial cells (ECs). Conditional kinase-dead FAK knockin within ECs inhibited recombinant vascular endothelial growth factor (VEGF-A) and tumor-induced VEC-Y658 phosphorylation in vivo. Adherence of VEGF-expressing tumor cells to ECs triggered FAK-dependent VEC-Y658 phosphorylation. Both FAK inhibition and VEC-Y658F mutation within ECs prevented VEGF-initiated paracellular permeability and tumor cell transmigration across EC barriers. In mice, EC FAK inhibition prevented VEGF-dependent tumor cell extravasation and melanoma dermal to lung metastasis without affecting primary tumor growth. As pharmacological c-Src or FAK inhibition prevents VEGF-stimulated c-Src and FAK translocation to EC adherens junctions, but FAK inhibition does not alter c-Src activation, our experiments identify EC FAK as a key intermediate between c-Src and the regulation of EC barrier function controlling tumor metastasis.


2010 ◽  
Vol 11 (10) ◽  
pp. 3999-4013 ◽  
Author(s):  
Wei Li ◽  
Hong-Ru Jiang ◽  
Xiao-Li Xu ◽  
Jie Wang ◽  
Jun Zhang ◽  
...  

2010 ◽  
Author(s):  
Kazuhiro Suzuki ◽  
Makoto Origuchi ◽  
Masahiko Kanehira ◽  
Ruowen Sun ◽  
Takenori Takahata ◽  
...  

2015 ◽  
Vol 309 (1) ◽  
pp. F35-F47 ◽  
Author(s):  
Malvika H. Solanki ◽  
Prodyot K. Chatterjee ◽  
Xiangying Xue ◽  
Madhu Gupta ◽  
Ivy Rosales ◽  
...  

Cisplatin, a commonly used chemotherapeutic for ovarian and other cancers, leads to hypomagnesemia in most patients and causes acute kidney injury (AKI) in 25–30% of patients. Previously, we showed that magnesium deficiency worsens cisplatin-induced AKI and magnesium replacement during cisplatin treatment protects against cisplatin-mediated AKI in non-tumor-bearing mice (Solanki MH, Chatterjee PK, Gupta M, Xue X, Plagov A, Metz MH, Mintz R, Singhal PC, Metz CN. Am J Physiol Renal Physiol 307: F369–F384, 2014). This study investigates the role of magnesium in cisplatin-induced AKI using a human ovarian tumor (A2780) xenograft model in mice and the effect of magnesium status on tumor growth and the chemotherapeutic efficacy of cisplatin in vivo. Tumor progression was unaffected by magnesium status in saline-treated mice. Cisplatin treatment reduced tumor growth in all mice, irrespective of magnesium status. In fact, cisplatin-treated magnesium-supplemented mice had reduced tumor growth after 3 wk compared with cisplatin-treated controls. While magnesium status did not interfere with tumor killing by cisplatin, it significantly affected renal function following cisplatin. Cisplatin-induced AKI was enhanced by magnesium deficiency, as evidenced by increased blood urea nitrogen, creatinine, and other markers of renal damage. This was accompanied by reduced renal mRNA expression of the cisplatin efflux transporter Abcc6. These effects were significantly reversed by magnesium replacement. On the contrary, magnesium status did not affect the mRNA expression of cisplatin uptake or efflux transporters by the tumors in vivo. Finally, magnesium deficiency enhanced platinum accumulation in the kidneys and renal epithelial cells, but not in the A2780 tumor cells. These findings demonstrate the renoprotective role of magnesium during cisplatin AKI, without compromising the chemotherapeutic efficacy of cisplatin in an ovarian tumor-bearing mouse model.


Blood ◽  
2012 ◽  
Vol 120 (8) ◽  
pp. 1678-1686 ◽  
Author(s):  
Yong Zhang ◽  
Aldo M. Roccaro ◽  
Christopher Rombaoa ◽  
Ludmilla Flores ◽  
Susanna Obad ◽  
...  

Abstract miR-155 acts as an oncogenic miR in B-cell lymphoproliferative disorders, including Waldenstrom macroglobulinemia (WM) and chronic lymphocytic leukemia, and is therefore a potential target for therapeutic intervention. However, efficient targeting of miRs in tumor cells in vivo remains a significant challenge for the development of miR-155–based therapeutics for the treatment of B-cell malignancies. In the present study, we show that an 8-mer locked nucleic acid anti–miR-155 oligonucleotide targeting the seed region of miR-155 inhibits WM and chronic lymphocytic leukemia cell proliferation in vitro. Moreover, anti–miR-155 delivered systemically showed uptake in the BM CD19+ cells of WM-engrafted mice, resulting in the up-regulation of several miR-155 target mRNAs in these cells, and decreased tumor growth significantly in vivo. We also found miR-155 levels to be elevated in stromal cells from WM patients compared with control samples. Interestingly, stromal cells from miR-155–knockout mice led to significant inhibition of WM tumor growth, indicating that miR-155 may also contribute to WM proliferation through BM microenvironmental cells. The results of the present study highlight the therapeutic potential of anti–miR-155–mediated inhibition of miR-155 in the treatment of WM.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3848-3848 ◽  
Author(s):  
Yu-Tzu Tai ◽  
Kihyun Kim ◽  
Xian-Feng Li ◽  
Mariateresa Fulciniti ◽  
Weihua Song ◽  
...  

Abstract Abstract 3848 Poster Board III-784 The mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway plays a crucial role in the pathogenesis of human multiple myeloma (MM) by promoting interactions of MM cells with bone marrow stromal cells (BMSCs) that secrete cytokines and growth factors for MM cell growth, survival, and resistance to chemotherapeutic drugs. Accumulating studies have supported targeting this signaling pathway in MM. Here we investigate cytotoxicity of AS703026, a novel selective MEK1/2 inhibitor with highly oral bioavailability, in MM cell lines and patient MM cells and define its mechanisms of action. AS703026, more potently (∼9-10 fold) than AZD6244, inhibits growth and survival of MM cells and cytokine-induced osteoclast differentiation. It specifically blocks baseline and adhesion-induced pERK1/2, but not pSTAT3. Selective MEK1/2 inhibition by AS703026 led to a cessation of cell proliferation accompanied by G0-G1 cell cycle arrest, as shown by increased subG0 cells, and concurrently abolished S phase cells. AS703026 also reduced expression of c-maf oncogene in a time-dependent manner, suggesting a MEK1/2-dependent regulation of c-maf that may contribute MM cell growth inhibition. AS703026 further induced apoptosis in MM cells, as manifested by caspase 3 and PARP cleavages in a time-dependent manner. It blocked osteoclastogenesis in vitro, as measured by number of TRAP-positive multinuclear cells following culturing PBMCs with RANKL and M-CSF. Importantly, AS703026 sensitized drug-resistant MM cells to a broad spectrum of conventional (dexamethasone, melphalan), as well as novel or emerging (lenalidomide, perifosine, bortezomib, rapamycin) anti-MM therapies. Synergistic or additive cytotoxicity (combination index < 1) induced by these combinations was further validated by annexin-V/PI staining and flow cytometric analysis. Combining these agents led to a significantly increased apoptosis and cell death than AS703026 alone, confirming enhanced cytotoxicity against MM cells. In vivo studies demonstrate that treatment of MM cell line H929-bearing mice with AS703026 (n=4 at 30 mg/kg; n=6 at 15 mg/kg), but not vehicle alone (n=6), blocked MM tumor growth in a dose-dependent manner (p<0.008 at 30 mg/kg; p<0.02 at 15 mg/kg). Immunoblotting and immunohistochemistrical staining showed that AS703026-reduced tumor growth was associated with downregulated pERK1/2, induced PARP cleavage, and decreased microvessels in vivo. Moreover, AS703026 (<200 nM) triggered significant cytotoxicity against the majority of patients with relapsed and refractory MM (>84%, n=18), regardless mutation status of 3 RAS and BRAF genes. Bone marrow stromal cells-induced viability of MM patient cells is similarly blocked within the same dose range. Our results therefore strongly support clinical protocols evaluating AS703026, alone or with other anti-MM agents, to improve patient outcome in MM. Disclosures: Chauhan: Progenra, Inc: Consultancy. Richardson:Keryx Biopharmaceuticals: Honoraria. Clark:EMD Serono: Employment. Ogden:EMD Serono: Employment. Andreas:EMD Serono: Employment. Rastelli:EMD Serono: Employment. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


2019 ◽  
Vol 12 (3) ◽  
pp. 202-215 ◽  
Author(s):  
Augustin Le Naour ◽  
Mélissa Prat ◽  
Benoît Thibault ◽  
Renaud Mével ◽  
Léa Lemaitre ◽  
...  

Abstract Factors released by surrounding cells such as cancer-associated mesenchymal stromal cells (CA-MSCs) are involved in tumor progression and chemoresistance. In this study, we characterize the mechanisms by which naïve mesenchymal stromal cells (MSCs) can acquire a CA-MSCs phenotype. Ovarian tumor cells trigger the transformation of MSCs to CA-MSCs by expressing pro-tumoral genes implicated in the chemoresistance of cancer cells, resulting in the secretion of high levels of CXC chemokine receptors 1 and 2 (CXCR1/2) ligands such as chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL2, and interleukin 8 (IL-8). CXCR1/2 ligands can also inhibit the immune response against ovarian tumor cells. Indeed, through their released factors, CA-MSCs promote the differentiation of monocytes towards M2 macrophages, which favors tumor progression. When CXCR1/2 receptors are inhibited, these CA-MSC-activated macrophages lose their M2 properties and acquire an anti-tumoral phenotype. Both ex vivo and in vivo, we used a CXCR1/2 inhibitor to sensitize ovarian tumor cells to carboplatin and circumvent the pro-tumoral effects of CA-MSCs. Since high concentrations of CXCR1/2 ligands in patients’ blood are associated with chemoresistance, CXCR1/2 inhibition could be a potential therapeutic strategy to revert carboplatin resistance.


2001 ◽  
Vol 49 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Eric E. Nilsson ◽  
Suzanne D. Westfall ◽  
Claudia McDonald ◽  
Tiffany Lison ◽  
Ingrid Sadler-Riggleman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document