scholarly journals Genetic Variation of the Borrelia burgdorferi Gene vlsE Involves Cassette-Specific, Segmental Gene Conversion

1998 ◽  
Vol 66 (8) ◽  
pp. 3698-3704 ◽  
Author(s):  
Jing-Ren Zhang ◽  
Steven J. Norris

ABSTRACT The Lyme disease spirochete Borrelia burgdorferipossesses 15 silent vls cassettes and a vlsexpression site (vlsE) encoding a surface-exposed lipoprotein. Segments of the silent vls cassettes have been shown to recombine with the vlsE cassette region in the mammalian host, resulting in combinatorial antigenic variation. Despite promiscuous recombination within the vlsE cassette region, the 5′ and 3′ coding sequences of vlsE that flank the cassette region are not subject to sequence variation during these recombination events. The segments of the silent vlscassettes recombine in the vlsE cassette region through a unidirectional process such that the sequence and organization of the silent vls loci are not affected. As a result of recombination, the previously expressed segments are replaced by incoming segments and apparently degraded. These results provide evidence for a gene conversion mechanism in VlsE antigenic variation.

1998 ◽  
Vol 66 (8) ◽  
pp. 3689-3697 ◽  
Author(s):  
Jing-Ren Zhang ◽  
Steven J. Norris

ABSTRACT The Lyme disease agent, Borrelia burgdorferi, is able to persistently infect humans and animals for months or years in the presence of an active immune response. It is not known how the organisms survive immune attack in the mammalian host.vlsE, a gene localized near one end of linear plasmid lp28-1 and encoding a surface-exposed lipoprotein in B. burgdorferi B31, was shown recently to undergo extensive genetic and antigenic variation within 28 days of initial infection in C3H/HeN mice. In this study, we examined the kinetics of vlsEsequence variation in C3H/HeN mice at 4, 7, 14, 21, and 28 days and at 7 and 12 months postinfection. Sequence changes were detected by PCR amplification and sequence analysis as early as 4 days postinfection and accumulated progressively in both C3H/HeN and CB-17 severe combined immunodeficient (SCID) mice throughout the course of infection. The sequence changes were consistent with sequential recombination of segments from multiple silent vls cassette sites into thevlsE expression site. No vlsE sequence changes were detected in organisms cultured in vitro for up to 84 days. These results indicate that vlsE recombination is induced by a factor(s) present in the mammalian host, independent of adaptive immune responses. The possible inducing conditions appear to be present in various tissue sites because isolates from multiple tissues showed similar degrees of sequence variation. The rate of accumulation of predicted amino acid changes was higher in the immunologically intact C3H/HeN mice than in SCID mice, a finding consistent with immune selection of VlsE variants.


2007 ◽  
Vol 76 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Erik G. Granquist ◽  
Snorre Stuen ◽  
Anna M. Lundgren ◽  
Margrethe Bråten ◽  
Anthony F. Barbet

ABSTRACT Anaplasma phagocytophilum has long been known to cause tick-borne fever in ruminants and has been identified more recently as the causative agent of the emerging disease human granulocytic anaplasmosis. The related organism Anaplasma marginale uses gene conversion of the expression site for two major outer membrane proteins (OMPs) to generate extensive sequence and antigenic variation in these OMPs. This is thought to present a continuously varying repertoire of epitopes to the mammalian host and allow disease persistence. Recent genomic and structural data on human strains of A. phagocytophilum, together with animal studies in model systems, have implicated an orthologous OMP of A. phagocytophilum in a similar mechanism of variation. However, to date there has been little investigation of the mechanisms of antigenic variation or disease persistence in hosts naturally infected with field strains of A. phagocytophilum. Approximately 300,000 lambs in Norway suffer severe disease caused by A. phagocytophilum annually. We show here the persistent and cyclic nature of infection in these animals that is accompanied by loosely programmed sequence variation of the major OMP expression site in each rickettsemic peak. These data will allow analysis of interactions between A. phagocytophilum and the host immune system in naturally occurring persistent infections and provide an important comparison with enduring infections of cattle caused by A. marginale.


2004 ◽  
Vol 72 (11) ◽  
pp. 6577-6585 ◽  
Author(s):  
Matthew B. Lawrenz ◽  
R. Mark Wooten ◽  
Steven J. Norris

ABSTRACT The loss of linear plasmid lp28-1, which contains the vls antigenic variation locus, is associated with reduced infectivity of Borrelia burgdorferi in immunocompetent mice. The recombinant shuttle vector pBBE22, which includes the virulence determinant BBE22 from lp25 and restores infectivity to readily transformable B. burgdorferi lacking lp25 and lp56, was used to determine the effect of trans expression of vlsE on virulence. Spirochetes lacking lp28-1 were complemented with the plasmid pBBE22:vlsE, containing both BBE22 and vlsE. VlsE protein produced by this construct was expressed and surface accessible in in vitro-cultured B. burgdorferi, as determined by surface proteolysis and immunoblot analysis. Clones lacking lp25 but containing lp28-1 and either pBBE22 or pBBE22:vlsE were reisolated consistently from immunocompetent mice 8 weeks after infection. In contrast, a clone lacking both lp25 and lp28-1 and complemented with pBBE22:vlsE was isolated from only a single tissue of one of six C3H/HeN mice 8 weeks postinfection. These results indicate that either an intact vls antigenic variation locus or another determinant on lp28-1 is required to restore complete infectivity. In addition, an isogenic clone that retained lp28-1 was complemented with the vlsE shuttle plasmid and was examined for vlsE sequence variation and infectivity. Sequence variation was not observed for the shuttle plasmid, indicating that the cis arrangement of vlsE and the vls silent cassettes in lp28-1 facilitate vlsE gene conversion. Lack of vlsE sequence variation on the shuttle plasmid thus did not result in clearance of the trans-complemented strain in immunocompetent mice under the conditions tested.


1997 ◽  
Vol 17 (2) ◽  
pp. 833-843 ◽  
Author(s):  
R McCulloch ◽  
G Rudenko ◽  
P Borst

African trypanosomes undergo antigenic variation of their variant surface glycoprotein (VSG) coat to avoid immune system-mediated killing by their mammalian host. An important mechanism for switching the expressed VSG gene is the duplicative transposition of a silent VSG gene into one of the telomeric VSG expression sites of the trypanosome, resulting in the replacement of the previously expressed VSG gene. This process appears to be a gene conversion reaction, and it has been postulated that sequences within the expression site may act to initiate and direct the reaction. All bloodstream form expression sites contain huge arrays (many kilobase pairs) of 70-bp repeat sequences that act as the 5' boundary of gene conversion reactions involving most silent VSG genes. For this reason, the 70-bp repeats seemed a likely candidate to be involved in the initiation of switching. Here, we show that deletion of the 70-bp repeats from the active expression site does not affect duplicative transposition of VSG genes from silent expression sites. We conclude that the 70-bp repeats do not appear to function as indispensable initiation sites for duplicative transposition and are unlikely to be the recognition sequence for a sequence-specific enzyme which initiates recombination-based VSG switching.


2001 ◽  
Vol 183 (20) ◽  
pp. 5855-5861 ◽  
Author(s):  
Shian-Ying Sung ◽  
John V. McDowell ◽  
Richard T. Marconi

ABSTRACT In the Lyme disease spirochetes, both the ospE andvlsE gene families have been demonstrated to undergo sequence variation during infection. To further investigate the mechanisms associated with the generation of vls variation, single-nucleotide polymorphism and subsequent DNA sequence analyses were performed on the vlsE gene and its paralog, BBJ51, a related gene with a frameshift mutation. These analyses focused on a series of postinfection clonal populations obtained from mice infected with Borrelia burgdorferi B31MIpc or its clonal derivative, B31MIc53. vlsE, but not BBJ51, was found to undergo sequence changes during infection. Consistent with that reported previously (J.-R. Zhang et al., Cell 89:275–285, 1997) many of the sequence changes appear to have arisen through gene conversion events and to be localized to the variable regions of vlsE. However, analysis of the vlsE nucleotide sequences revealed that some sequence changes were the result of point mutations, as these changes did not have potential contributing sources in thevls cassettes. To determine if sequence changes accumulate in vlsE over long-term infection, thevlsE genes of clonal populations recovered after 7 months of infection in mice were analyzed. While new sequence changes developed, a significant number of these changes resulted in the restoration of the vlsE sequence of the original infecting clone. In addition, we noted that some positions within the variable regions (VR) are stable even though the cassettes possess residues that could contribute to sequence variation through gene conversion. These analyses suggest that the total number of amino acid sequence changes that can be maintained by VlsE levels off during infection. In summary, in this report we demonstrate that the development of point mutations serves as a second mechanism by which vlsE sequence variation can be generated and that the capacity for vlsEvariation, while still significant, is less than previously postulated.


2007 ◽  
Vol 76 (1) ◽  
pp. 391-402 ◽  
Author(s):  
Mahulena Maruskova ◽  
M. Dolores Esteve-Gassent ◽  
Valerie L. Sexton ◽  
J. Seshu

ABSTRACT Borrelia burgdorferi, the causative agent of Lyme disease, undergoes rapid adaptive gene expression in response to environmental signals encountered during different stages of its life cycle in the arthropod vector or the mammalian host. Among all the plasmid-encoded genes of B. burgdorferi, several linear plasmid 54 (lp54)-encoded open reading frames (ORFs) exhibit the greatest differential expression in response to mammalian host-specific temperature, pH, and other uncharacterized signals. These ORFs include members of the paralogous gene family 54 (pgf 54), such as BBA64, BBA65, and BBA66, present on lp54. In an attempt to correlate transcriptional up-regulation of these pgf 54 members to their role in infectivity, we inactivated BBA64 and characterized the phenotype of this mutant both in vitro and in vivo. There were no major differences in the protein profiles between the BBA64 mutant and the control strains, while immunoblot analysis indicated that inactivation of BBA64 resulted in increased levels of BBA65. Moreover, there was no significant difference in the ability of the BBA64 mutant to infect C3H/HeN mice compared to that of its parental or complemented control strains as determined by culturing of viable spirochetes from infected tissues. However, enumeration of spirochetes using quantitative real-time PCR revealed tissue-specific differences, suggesting a minimal role for BBA64 in the survival of B. burgdorferi in select tissues. Infectivity analysis of the BBA64 mutant suggests that B. burgdorferi may utilize multiple determinants to establish infection in mammalian hosts.


2004 ◽  
Vol 72 (11) ◽  
pp. 6433-6445 ◽  
Author(s):  
Melissa J. Caimano ◽  
Christian H. Eggers ◽  
Karsten R. O. Hazlett ◽  
Justin D. Radolf

ABSTRACT Borrelia burgdorferi, the Lyme disease spirochete, undergoes dramatic changes in antigenic composition as it cycles between its arthropod and mammalian hosts. A growing body of evidence suggests that these changes reflect, at least in part, the need for spirochetes to adapt to the physiological stresses imposed by abrupt changes in environmental conditions and nutrient availability. In many microorganisms, global responses are mediated by master regulators such as alternative sigma factors, with Escherichia coli RpoS (σS) serving as a prototype. The importance of this transcriptional activator in other bacteria, coupled with the report by Hübner et al. (A. Hübner, X. Yang, D. M. Nolen, T. G. Popova, F. C. Cabello, and M. V. Norgard, Proc. Natl. Acad. Sci. USA 98:12724-12729, 2001) demonstrating that the borrelial RpoS ortholog controls expression of OspC and decorin-binding protein A (DbpA), prompted us to examine more closely the roles of RpoS-dependent and -independent differential gene expression in physiological adaptation by the Lyme disease spirochete. We observed that B. burgdorferi rpoS (rpoSBb ) was induced following temperature shift and transcript levels were further enhanced by reduced pH (pH 6.8). Using quantitative real-time reverse transcription-PCR (RT-PCR), we demonstrated that, in contrast to its ortholog (rpoSEc ) in Escherichia coli, rpoSBb was expressed at significant levels in B. burgdorferi throughout all phases of growth following temperature shift. By comparing a B. burgdorferi strain 297 rpoSBb mutant to its wild-type counterpart, we determined that RpoS Bb was not required for survival following exposure to a wide range of environmental stresses (i.e., temperature shift, serum starvation, increased osmolality, reactive oxygen intermediates, and increased or reduced oxygen tension), although the mutant was more sensitive to extremes of pH. While B. burgdorferi strains lacking RpoS were able to survive within intraperitoneal dialysis membrane chambers at a level equivalent to that of the wild type, they were avirulent in mice. Lastly, RT-PCR analysis of the ospE-ospF-elp paralogous lipoprotein families complements earlier findings that many temperature-inducible borrelial loci are controlled in an RpoS Bb -independent manner. Together, these data point to fundamental differences between the role(s) of RpoS in B. burgdorferi and that in E. coli. Rather than functioning as a master regulator, RpoS Bb appears to serve as a stress-responsive activator of a subset of virulence determinants that, together with the RpoS-independent, differentially expressed regulon, encompass the spirochete's genetic programs required for mammalian host adaptation.


2017 ◽  
Vol 86 (2) ◽  
Author(s):  
Samantha Schlachter ◽  
Janakiram Seshu ◽  
Tao Lin ◽  
Steven Norris ◽  
Nikhat Parveen

ABSTRACTThe Lyme disease-causing organismBorrelia burgdorferiis transmitted into the mammalian host by an infected-tick bite. Successful infection relies on the ability of this extracellular pathogen to persist and colonize different tissues.B. burgdorferiencodes a large number of adhesins that are able to interact with host ligands to facilitate adherence and tissue colonization. Multiple glycosaminoglycan binding proteins present inB. burgdorferioffer a degree of redundancy of function during infection, and this highlights the importance of glycosaminoglycans as host cell receptors for spirochete adherence. Of particular interest in this study isBorreliaglycosaminoglycan binding protein (Bgp), which binds to heparin-related glycosaminoglycans. The properties of abgptransposon mutant and atrans-complemented derivative were compared to those of the wild-typeB. burgdorferiin thein vitrobinding assays and in infection studies using a C3H/HeJ mouse infection model. We determined that the loss of Bgp impairs spirochete adherence, infectivity, and tissue colonization, resulting in a reduction of inflammatory manifestations of Lyme disease. Although Bgp is not essential for infectivity, it is an important virulence factor ofB. burgdorferithat allows adherence and tissue colonization and contributes to disease severity.


Sign in / Sign up

Export Citation Format

Share Document