scholarly journals Role of the BBA64 Locus of Borrelia burgdorferi in Early Stages of Infectivity in a Murine Model of Lyme Disease

2007 ◽  
Vol 76 (1) ◽  
pp. 391-402 ◽  
Author(s):  
Mahulena Maruskova ◽  
M. Dolores Esteve-Gassent ◽  
Valerie L. Sexton ◽  
J. Seshu

ABSTRACT Borrelia burgdorferi, the causative agent of Lyme disease, undergoes rapid adaptive gene expression in response to environmental signals encountered during different stages of its life cycle in the arthropod vector or the mammalian host. Among all the plasmid-encoded genes of B. burgdorferi, several linear plasmid 54 (lp54)-encoded open reading frames (ORFs) exhibit the greatest differential expression in response to mammalian host-specific temperature, pH, and other uncharacterized signals. These ORFs include members of the paralogous gene family 54 (pgf 54), such as BBA64, BBA65, and BBA66, present on lp54. In an attempt to correlate transcriptional up-regulation of these pgf 54 members to their role in infectivity, we inactivated BBA64 and characterized the phenotype of this mutant both in vitro and in vivo. There were no major differences in the protein profiles between the BBA64 mutant and the control strains, while immunoblot analysis indicated that inactivation of BBA64 resulted in increased levels of BBA65. Moreover, there was no significant difference in the ability of the BBA64 mutant to infect C3H/HeN mice compared to that of its parental or complemented control strains as determined by culturing of viable spirochetes from infected tissues. However, enumeration of spirochetes using quantitative real-time PCR revealed tissue-specific differences, suggesting a minimal role for BBA64 in the survival of B. burgdorferi in select tissues. Infectivity analysis of the BBA64 mutant suggests that B. burgdorferi may utilize multiple determinants to establish infection in mammalian hosts.

2008 ◽  
Vol 76 (11) ◽  
pp. 5274-5284 ◽  
Author(s):  
Mahulena Maruskova ◽  
J. Seshu

ABSTRACT Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to highly disparate environmental signals encountered in its tick vector versus vertebrate hosts. Whole-genome transcriptional profile analysis of B. burgdorferi, propagated in vitro under mammalian-host-specific conditions, revealed significant upregulation of several linear plasmid 54 (lp54)-encoded open reading frames (ORFs). Among these ORFs, BBA64, BBA65, and BBA66 have been shown to be upregulated in response to multiple mammalian-host-specific signals. Recently, we determined that there was no significant difference in the ability of BBA64− mutant to infect C3H/HeN mice compared to its isogenic control strains, suggesting that B. burgdorferi might utilize multiple, functionally related determinants to establish infection. We further generated BBA65− and BBA66− single mutants in a noninfectious, lp25− clonal isolate of B. burgdorferi strain B31 (ML23) and complemented them with the minimal region of lp25 (BBE22) required for restoring the infectivity. In addition, we generated a BBA64− BBA65− BBA66− triple mutant using an infectious, clonal isolate of B. burgdorferi strain B31 (5A11) that has all of the infection-associated plasmids. There were no significant differences in the ability to isolate viable spirochetes from different tissues of C3H/HeN mice infected via intradermal needle inoculation with either the individual single mutants or the triple mutant compared to their respective isogenic parental strains at days 21 and 62 postinfection. These observations suggest that B. burgdorferi can establish infection in the absence of expression of BBA64, BBA65, and BBA66 in the murine model of Lyme disease.


2004 ◽  
Vol 186 (16) ◽  
pp. 5230-5238 ◽  
Author(s):  
Radha Krishnakumar ◽  
Maureen Craig ◽  
James A. Imlay ◽  
James M. Slauch

ABSTRACT Salmonella enterica serovar Typhimurium produces two Cu/Zn cofactored periplasmic superoxide dismutases, SodCI and SodCII. While mutations in sodCI attenuate virulence eightfold, loss of SodCII does not confer a virulence phenotype, nor does it enhance the defect observed in a sodCI background. Despite this in vivo phenotype, SodCI and SodCII are expressed at similar levels in vitro during the stationary phase of growth. By exchanging the open reading frames of sodCI and sodCII, we found that SodCI contributes to virulence when placed under the control of the sodCII promoter. In contrast, SodCII does not contribute to virulence even when expressed from the sodCI promoter. Thus, the disparity in virulence phenotypes is due primarily to some physical difference between the two enzymes. In an attempt to identify the unique property of SodCI, we have tested factors that might affect enzyme activity inside a phagosome. We found no significant difference between SodCI and SodCII in their resistance to acid, resistance to hydrogen peroxide, or ability to obtain copper in a copper-limiting environment. Both enzymes are synthesized as apoenzymes in the absence of copper and can be fully remetallated when copper is added. The one striking difference that we noted is that, whereas SodCII is released normally by an osmotic shock, SodCI is “tethered” within the periplasm by an apparently noncovalent interaction. We propose that this novel property of SodCI is crucial to its ability to contribute to virulence in serovar Typhimurium.


2017 ◽  
Vol 86 (2) ◽  
Author(s):  
Samantha Schlachter ◽  
Janakiram Seshu ◽  
Tao Lin ◽  
Steven Norris ◽  
Nikhat Parveen

ABSTRACTThe Lyme disease-causing organismBorrelia burgdorferiis transmitted into the mammalian host by an infected-tick bite. Successful infection relies on the ability of this extracellular pathogen to persist and colonize different tissues.B. burgdorferiencodes a large number of adhesins that are able to interact with host ligands to facilitate adherence and tissue colonization. Multiple glycosaminoglycan binding proteins present inB. burgdorferioffer a degree of redundancy of function during infection, and this highlights the importance of glycosaminoglycans as host cell receptors for spirochete adherence. Of particular interest in this study isBorreliaglycosaminoglycan binding protein (Bgp), which binds to heparin-related glycosaminoglycans. The properties of abgptransposon mutant and atrans-complemented derivative were compared to those of the wild-typeB. burgdorferiin thein vitrobinding assays and in infection studies using a C3H/HeJ mouse infection model. We determined that the loss of Bgp impairs spirochete adherence, infectivity, and tissue colonization, resulting in a reduction of inflammatory manifestations of Lyme disease. Although Bgp is not essential for infectivity, it is an important virulence factor ofB. burgdorferithat allows adherence and tissue colonization and contributes to disease severity.


1998 ◽  
Vol 66 (5) ◽  
pp. 2143-2153 ◽  
Author(s):  
Mark S. Hanson ◽  
David R. Cassatt ◽  
Betty P. Guo ◽  
Nita K. Patel ◽  
Michael P. McCarthy ◽  
...  

ABSTRACT Borrelia burgdorferi, the spirochete that causes Lyme disease, binds decorin, a collagen-associated extracellular matrix proteoglycan found in the skin (the site of entry for the spirochete) and in many other tissues. Two borrelial adhesins that recognize this proteoglycan, decorin binding proteins A and B (DbpA and DbpB, respectively), have recently been identified. Infection of mice by low-dose B. burgdorferi challenge elicited antibodies against DbpA and DbpB that were sustained at high levels, suggesting that these antigens are expressed in vivo. Scanning immunoelectron microscopy showed that DbpA was surface accessible on intact borreliae. Passive administration of DbpA antiserum protected mice from infection following challenge with heterologous B. burgdorferi sensu stricto isolates, even when serum administration was delayed for up to 4 days after challenge. DbpA is the first antigen target identified that is capable of mediating immune resolution of early, localizedB. burgdorferi infections. DbpA immunization also protected mice from B. burgdorferi challenge; DbpB immunization was much less effective. DbpA antiserum inhibited in vitro growth of manyB. burgdorferi sensu lato isolates of diverse geographic, phylogenetic, and clinical origins. In combination, these findings support a role for DbpA in the immunoprophylaxis of Lyme disease and suggest that DbpA vaccines have the potential to eliminate early-stageB. burgdorferi infections.


2015 ◽  
Vol 25 (5) ◽  
pp. 349-361 ◽  
Author(s):  
Timothy Casselli ◽  
Troy Bankhead

The causative agent of Lyme disease, <i>Borrelia burgdorferi,</i> is an obligate parasite that requires either a tick vector or a mammalian host for survival. Identification of the bacterial genes that are specifically expressed during infection of the mammalian host could provide targets for novel therapeutics and vaccines. In vivo expression technology (IVET) is a reporter-based promoter trap system that utilizes selectable markers to identify promoters of bacterial host-specific genes. Using previously characterized genes for in vivo and in vitro selection, this study utilized an IVET system that allows for selection of <i>B. burgdorferi</i> sequences that act as active promoters only during murine infection. This promoter trap system was able to successfully distinguish active promoter sequences both in vivo and in vitro from control sequences and a library of cloned <i>B. burgdorferi</i> genomic fragments. However, a bottleneck effect during the experimental mouse infection limited the utility for genome-wide promoter screening. Overall, IVET was demonstrated as a tool for the identification of in vivo-induced promoter elements of <i>B. burgdorferi,</i> and the observed infection bottleneck apparent using a polyclonal infection pool provides insight into the dynamics of experimental infection with <i>B. burgdorferi.</i>


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 633 ◽  
Author(s):  
Hari-Hara S. K. Potula ◽  
Jahanbanoo Shahryari ◽  
Mohammed Inayathullah ◽  
Andrey Victorovich Malkovskiy ◽  
Kwang-Min Kim ◽  
...  

Lyme disease caused by the Borrelia burgdorferi (Bb or B. burgdorferi) is the most common vector-borne, multi-systemic disease in the USA. Although most Lyme disease patients can be cured with a course of the first line of antibiotic treatment, some patients are intolerant to currently available antibiotics, necessitating the development of more effective therapeutics. We previously found several drugs, including disulfiram, that exhibited effective activity against B. burgdorferi. In the current study, we evaluated the potential of repurposing the FDA-approved drug, disulfiram for its borreliacidal activity. Our results indicate disulfiram has excellent borreliacidal activity against both the log and stationary phase B. burgdorferi sensu stricto B31 MI. Treatment of mice with disulfiram eliminated the B. burgdorferi sensu stricto B31 MI completely from the hearts and urinary bladder by day 28 post infection. Moreover, disulfiram-treated mice showed reduced expressions of inflammatory markers, and thus they were protected from histopathology and cardiac organ damage. Furthermore, disulfiram-treated mice showed significantly lower amounts of total antibody titers (IgM and IgG) at day 21 and total IgG2b at day 28 post infection. FACS analysis of lymph nodes revealed a decrease in the percentage of CD19+ B cells and an increase in total percentage of CD3+ T cells, CD3+ CD4+ T helpers, and naive and effector memory cells in disulfiram-treated mice. Together, our findings suggest that disulfiram has the potential to be repurposed as an effective antibiotic for treating Lyme disease.


2018 ◽  
Vol 86 (7) ◽  
Author(s):  
Trever C. Smith ◽  
Sarah M. Helm ◽  
Yue Chen ◽  
Ying-Han Lin ◽  
S. L. Rajasekhar Karna ◽  
...  

ABSTRACT Borrelia burgdorferi , the agent of Lyme disease (LD), uses host-derived signals to modulate gene expression during the vector and mammalian phases of infection. Microarray analysis of mutants lacking the B orrelia host ad aptation r egulator (BadR) revealed the downregulation of genes encoding enzymes whose role in the pathophysiology of B. burgdorferi is unknown. Immunoblot analysis of the badR mutants confirmed reduced levels of these enzymes, and one of these enzymes, encoded by bb0086 , shares homology to prokaryotic magnesium chelatase and Lon-type proteases. The BB0086 levels in B. burgdorferi were higher under conditions mimicking those in fed ticks. Mutants lacking bb0086 had no apparent in vitro growth defect but were incapable of colonizing immunocompetent C3H/HeN or immunodeficient SCID mice. Immunoblot analysis revealed reduced levels of proteins critical for the adaptation of B. burgdorferi to the mammalian host, such as OspC, DbpA, and BBK32. Both RpoS and BosR, key regulators of gene expression in B. burgdorferi , were downregulated in the bb0086 mutants. Therefore, we designated BB0086 the B orrelia host ad aptation p rotein (BadP). Unlike badP mutants, the control strains established infection in C3H/HeN mice at 4 days postinfection, indicating an early colonization defect in mutants due to reduced levels of the lipoproteins/regulators critical for initial stages of infection. However, badP mutants survived within dialysis membrane chambers (DMCs) implanted within the rat peritoneal cavity but, unlike the control strains, did not display complete switching of OspA to OspC, suggesting incomplete adaptation to the mammalian phase of infection. These findings have opened a novel regulatory mechanism which impacts the virulence potential of B . burgdorferi .


1995 ◽  
Vol 181 (1) ◽  
pp. 215-221 ◽  
Author(s):  
E Fikrig ◽  
S R Telford ◽  
R Wallich ◽  
M Chen ◽  
Y Lobet ◽  
...  

Diversity and mutations in the genes for outer surface proteins (Osps) A and B of Borrelia burgdorferi sensu lato (B. burgdorferi), the spirochetal agent of Lyme disease, suggests that a monovalent OspA or OspB vaccine may not provide protection against antigenically variable naturally occurring B. burgdorferi. We now show that OspA or OspB immunizations protect mice from tick-borne infection with heterogeneous B. burgdorferi from different geographic regions. This result is in distinct contrast to in vitro killing analyses and in vivo protection studies using syringe injections of B. burgdorferi as the challenge inoculum. Evaluations of vaccine efficacy against Lyme disease and other vector-borne infections should use the natural mode of transmission and not be predicated on classification systems or assays that do not rely upon the vector to transmit infection.


Sign in / Sign up

Export Citation Format

Share Document