scholarly journals Genetic Diversity of the Capsular Polysaccharide C Biosynthesis Region of Bacteroides fragilis

2000 ◽  
Vol 68 (11) ◽  
pp. 6182-6188 ◽  
Author(s):  
Laurie E. Comstock ◽  
Annalisa Pantosti ◽  
Dennis L. Kasper

ABSTRACT A genetic approach was used to assess the heterogeneity of the capsular polysaccharide C (PS C) biosynthesis locus ofBacteroides fragilis and to determine whether distinct loci contain genes whose products are likely to be involved in conferring charged groups that enable the B. fragilis capsular polysaccharides to induce abscesses. A collection of 50 B. fragilis strains was examined. PCR analysis demonstrated that the genes flanking the PS C biosynthesis region are conserved, whereas the genes within the loci are heterogeneous. OnlycfiA + B. fragilis strains, which represent 3% of the clinical isolates of B. fragilis, displayed heterogeneity in the regions flanking the polysaccharide biosynthesis genes. Primers were designed in the conserved regions upstream and downstream of the PS C locus and were used to amplify the region from 45 of the 50 B. fragilis strains studied. Fourteen PS C genetic loci could be differentiated by a combination of PCR and extended PCR. These loci ranged in size from 14 to 26 kb. Hybridization analysis with genes from the PS C loci of strains 9343 and 638R revealed that the majority of strains contain homologs ofwcgC (N-acetylmannosamine dehydrogenase),wcfF (putative dehydrogenase), and wcgP(putative aminotransferase). The data suggest that the synthesis of polysaccharides that have zwitterionic characteristics rendering them able to induce abscesses is common in B. fragilis.

1999 ◽  
Vol 67 (7) ◽  
pp. 3525-3532 ◽  
Author(s):  
Laurie E. Comstock ◽  
Michael J. Coyne ◽  
Arthur O. Tzianabos ◽  
Annalisa Pantosti ◽  
Andrew B. Onderdonk ◽  
...  

ABSTRACT A major clinical manifestation of infection with Bacteroides fragilis is the formation of intra-abdominal abscesses, which are induced by the capsular polysaccharides of this organism. Transposon mutagenesis was used to locate genes involved in the synthesis of capsular polysaccharides. A 24,454-bp region was sequenced and found to contain a 15,379-bp locus (designated wcf) with 16 open reading frames (ORFs) encoding products similar to those encoded by genes of other bacterial polysaccharide biosynthesis loci. Four genes encode products that are similar to enzymes involved in nucleotide sugar biosynthesis. Seven genes encode products that are similar to sugar transferases. Two gene products are similar toO-acetyltransferases, and two products are probably involved in polysaccharide transport and polymerization. The product of one ORF, WcfH, is similar to a set of deacetylases of the NodB family. Deletion mutants demonstrated that the wcf locus is necessary for the synthesis of polysaccharide B, one of the two capsular polysaccharides of B. fragilis 9343. The virulence of the polysaccharide B-deficient mutant was comparable to that of the wild type in terms of its ability to induce abscesses in a rat model of intra-abdominal infection.


2001 ◽  
Vol 69 (7) ◽  
pp. 4342-4350 ◽  
Author(s):  
Michael J. Coyne ◽  
Arthur O. Tzianabos ◽  
Benjamin C. Mallory ◽  
Vincent J. Carey ◽  
Dennis L. Kasper ◽  
...  

ABSTRACT Bacteroides fragilis, though only a minor component of the human intestinal commensal flora, is the anaerobe most frequently isolated from intra-abdominal abscesses. B. fragilis 9343 expresses at least three capsular polysaccharides—polysaccharide A (PS A), PS B, and PS C. Purified PS A and PS B have been tested in animal models and are both able to induce the formation of intra-abdominal abscesses. Mutants unable to synthesize PS B or PS C still facilitate abscess formation at levels comparable to those of wild-type 9343. To determine the contribution of PS A to abscess formation in the context of the intact organism, the PS A biosynthesis region was cloned, sequenced, and deleted from 9343 to produce a PS A-negative mutant. Animal experiments demonstrate that the abscess-inducing capability of 9343 is severely attenuated when the organism cannot synthesize PS A, despite continued synthesis of the other capsular polysaccharides. The PS A of 9343 contains an unusual free amino sugar that is essential for abscess formation by this polymer. PCR analysis of the PS A biosynthesis loci of 50 B. fragilis isolates indicates that regions flanking each side of this locus are conserved in all strains. The downstream conserved region includes two terminal PS A biosynthesis genes that homology-based analyses predict are involved in the synthesis and transfer of the free amino sugar of PS A. Conservation of these genes suggests that this sugar is present in the PS A of all serotypes and may explain the abscessogenic nature of B. fragilis.


Microbiology ◽  
2009 ◽  
Vol 155 (4) ◽  
pp. 1039-1049 ◽  
Author(s):  
Sheila Patrick ◽  
Simon Houston ◽  
Zubin Thacker ◽  
Garry W. Blakely

The obligate anaerobe Bacteroides fragilis is a normal resident of the human gastrointestinal tract. The clinically derived B. fragilis strain NCTC 9343 produces an extensive array of extracellular polysaccharides (EPS), including antigenically distinct large, small and micro- capsules. The genome of NCTC 9343 encodes multiple gene clusters potentially involved in the biosynthesis of EPS, eight of which are implicated in production of the antigenically variable micro-capsule. We have developed a rapid and robust method for generating marked and markerless deletions, together with efficient electroporation using unmodified plasmid DNA to enable complementation of mutations. We show that deletion of a putative wzz homologue prevents production of high-molecular-mass polysaccharides (HMMPS), which form the micro-capsule. This observation suggests that micro-capsule HMMPS constitute the distal component of LPS in B. fragilis. The long chain length of this polysaccharide is strikingly different from classical enteric O-antigen, which consists of short-chain polysaccharides. We also demonstrate that deletion of a putative wbaP homologue prevents expression of the phase-variable large capsule and that expression can be restored by complementation. This suggests that synthesis of the large capsule is mechanistically equivalent to production of Escherichia coli group 1 and 4 capsules.


Microbiology ◽  
2009 ◽  
Vol 155 (12) ◽  
pp. 4170-4183 ◽  
Author(s):  
Hung-Yu Shu ◽  
Chang-Phone Fung ◽  
Yen-Ming Liu ◽  
Keh-Ming Wu ◽  
Ying-Tsong Chen ◽  
...  

Klebsiella pneumoniae is an enteric pathogen causing community-acquired and hospital-acquired infections in humans. Epidemiological studies have revealed significant diversity in capsular polysaccharide (CPS) type and clinical manifestation of K. pneumoniae infection in different geographical areas of the world. We have sequenced the capsular polysaccharide synthesis (cps) region of seven clinical isolates and compared the sequences with the publicly available cps sequence data of five strains: NTUH-K2044 (K1 serotype), Chedid (K2 serotype), MGH78578 (K52 serotype), A1142 (K57 serotype) and A1517. Among all strains, six genes at the 5′ end of the cps clusters that encode proteins for CPS transportation and processing at the bacterial surface are highly similar to each other. The central region of the cps gene clusters, which encodes proteins for polymerization and assembly of the CPS subunits, is highly divergent. Based on the collected sequence, we found that either the wbaP gene or the wcaJ gene exists in a given K. pneumoniae strain, suggesting that there is a major difference in the CPS biosynthesis pathway and that the K. pneumoniae strains can be classified into at least two distinct groups. All isolates contain gnd, encoding gluconate-6-phosphate dehydrogenase, at the 3′ end of the cps gene clusters. The rmlBADC genes were found in CPS K9-positive, K14-positive and K52-positive strains, while manC and manB were found in K1, K2, K5, K14, K62 and two undefined strains. Our data indicate that, while overall genomic organization is similar between different pathogenic K. pneumoniae strains, the genetic variation of the sugar moiety and polysaccharide linkage generate the diversity in CPS molecules that could help evade host immune attack.


2010 ◽  
Vol 192 (21) ◽  
pp. 5832-5836 ◽  
Author(s):  
Erin B. Troy ◽  
Vincent J. Carey ◽  
Dennis L. Kasper ◽  
Laurie E. Comstock

ABSTRACT Orientations of the seven invertible polysaccharide biosynthesis locus promoters of B acteroides fragilis were determined from bacteria grown in vitro, from feces of monoassociated and complex colonized mice, and from B. fragilis-induced murine abscesses. Bacteria grown in vivo have greater variability in orientation of polysaccharide locus promoters than culture-grown organisms.


2000 ◽  
Vol 68 (11) ◽  
pp. 6176-6181 ◽  
Author(s):  
Michael J. Coyne ◽  
Wiltrud Kalka-Moll ◽  
Arthur O. Tzianabos ◽  
Dennis L. Kasper ◽  
Laurie E. Comstock

ABSTRACT Bacteroides fragilis produces a capsular polysaccharide complex (CPC) that is directly involved in its ability to induce abscesses. Two distinct capsular polysaccharides, polysaccharide A (PS A) and PS B, have been shown to be synthesized by the prototype strain for the study of abscesses, NCTC9343. Both of these polysaccharides in purified form induce abscesses in animal models. In this study, we demonstrate that the CPC of NCTC9343 is composed of at least three distinct capsular polysaccharides: PS A, PS B, and PS C. A previously described locus contains genes whose products are involved in the biosynthesis of PS C rather than PS B as was originally suggested. The actual PS B biosynthesis locus was cloned, sequenced, and found to contain 22 genes in an operon-type structure. A mutant with a large chromosomal deletion of the PS B biosynthesis locus was created so that the contribution of PS B to the formation of abscesses could be assessed in a rodent model. Although purified PS B can induce abscesses, removal of this polysaccharide does not attenuate the organism's ability to induce abscesses.


2008 ◽  
Vol 7 (9) ◽  
pp. 1611-1615 ◽  
Author(s):  
Sherry A. Castle ◽  
Elizabeth A. Owuor ◽  
Stephanie H. Thompson ◽  
Michelle R. Garnsey ◽  
J. Stacey Klutts ◽  
...  

ABSTRACT The Manα1,3(Xylβ1,2)Manα structural motif is common to both capsular polysaccharides of Cryptococcus neoformans and to cryptococcal glycosphingolipids. Comparative analysis of glycosphingolipid structural profiles in wild-type and mutant strains showed that the Xylβ1,2-transferase (Cxt1p) that participates in capsular polysaccharide biosynthesis is also the sole transferase responsible for adding xylose to C. neoformans glycosphingolipids.


1999 ◽  
Vol 181 (19) ◽  
pp. 6192-6196 ◽  
Author(s):  
Laurie E. Comstock ◽  
Michael J. Coyne ◽  
Arthur O. Tzianabos ◽  
Dennis L. Kasper

ABSTRACT The sequence and analysis of the capsular polysaccharide biosynthesis locus, PS B2, of Bacteroides fragilis 638R are described, and the sequence is compared with that of the PS B1 biosynthesis locus of B. fragilis NCTC 9343. Two genes of the region, wcgD and wcgC, are shown by complementation to encode a UDP-N-acetylglucosamine 2-epimerase and a UDP-N-acetylmannosamine dehydrogenase, respectively.


2006 ◽  
Vol 189 (5) ◽  
pp. 2119-2124 ◽  
Author(s):  
Hazeline Roche-Hakansson ◽  
Maria Chatzidaki-Livanis ◽  
Michael J. Coyne ◽  
Laurie E. Comstock

ABSTRACT The activity of a fourth conserved tyrosine site-specific recombinase (Tsr) of Bacteroides fragilis was characterized. Its gene, tsr19, is adjacent to mpi, encoding the global DNA invertase regulating capsular polysaccharide biosynthesis. Unlike the other described Tsrs of B. fragilis, Tsr19 brings about inversion of two DNA regions, one local and one located distantly.


Sign in / Sign up

Export Citation Format

Share Document