putative aminotransferase
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 1)

Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 819 ◽  
Author(s):  
Siyoung Jang ◽  
Minjeong Park ◽  
Do-Gyeong Lee ◽  
Jung-Hyun Lim ◽  
Ji-Won Jung ◽  
...  

Capsaicinoids, which cause a hot sensation when eaten, are uniquely present in pepper (Capsicum sp.) and are biosynthesized by combining vanillyl amine with branched fatty acids. A mutation in the gene encoding putative aminotransferase (pAMT)—the enzyme that normally biosynthesizes the capsaicinoid precursor vanillyl amine—leads instead to the biosynthesis of vanillyl alcohol, which combines with branched fatty acids to form capsinoids. Here, we report a method for increasing the capsaicinoid and capsinoid contents using quantitative trait locus (QTL) alleles involved in capsaicinoid biosynthesis in the pericarps of extremely spicy peppers. QTLs for capsinoid contents were detected on chromosome 6 and 10 using an F2 population from ‘SNU11–001’ and ‘Bhut Jolokia (BJ)’ (‘SJ’). ‘SNU11–001’ contains high capsinoid contents and ‘BJ’ contains high capsaicinoid contents in both the placenta and pericarp. These QTLs overlapped QTL regions associated with pungency in the pericarp. ‘BJ’ was crossed also with ‘Habanero’ (‘HB’), which contains capsaicinoids mainly in the placenta, and the resulting (‘HJ’) F2 and F3 offspring with ‘BJ’ genotypes were selected based on QTL markers and the pericarp pungency phenotype. Similarly, F2 and F3 offspring with high capsinoid contents in the pericarp were selected in ‘SJ’ with reference to ‘BJ’ genotypes at the QTLs. Through continuous self-pollination, ‘SJ’ and ‘BJ’ lines with high capsinoid and capsaicinoid contents, respectively, in both the placenta and pericarp were developed. This study is the first to show that lines containing high levels of capsinoids and capsaicinoids can be bred using pericarp capsaicinoid biosynthesis genes.


2015 ◽  
Vol 290 (6) ◽  
pp. 2217-2224 ◽  
Author(s):  
Young-Jun Park ◽  
Tomotaro Nishikawa ◽  
Mineo Minami ◽  
Kazuhiro Nemoto ◽  
Tomohiro Iwasaki ◽  
...  

2015 ◽  
Vol 35 (6) ◽  
Author(s):  
Yoshiyuki Tanaka ◽  
Tomomi Sonoyama ◽  
Yuji Muraga ◽  
Sota Koeda ◽  
Tanjuro Goto ◽  
...  

2015 ◽  
Vol 25 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Dai-Joong Kim ◽  
Gui-Hye Hwang ◽  
Ji-Na Um ◽  
Jae-Yong Cho

Overexpression of the NCgl0462 open reading frame, encoding a class II aminotransferase, was studied in conjunction with other enzymes in <smlcap>L</smlcap>-ornithine biosynthesis in an <smlcap>L</smlcap>-ornithine-producing strain. Expression of the wild-type NCgl0462 open reading frame, which displayed aminotransferase activity, was amplified by placing it under the control of the glyceraldehyde 3-phosphate dehydrogenase gene promoter in the pEK0 plasmid and in the genome. <smlcap>L</smlcap>-Ornithine production in <i>Corynebacterium</i><i>glutamicum</i> SJC8260 harboring plasmid and the genomic NCgl0462 open reading frame was increased by 8.8 and 21.6%, respectively. In addition, the combined overexpression of the NCgl0462 open reading frame within the genome along with the mutated <smlcap>L</smlcap>-ornithine biosynthesis genes <i>(argCJBD)</i> placed in the pEK0 plasmid in <i>C</i>. <i>glutamicum</i> SJC8260 resulted in significant improvement in <smlcap>L</smlcap>-ornithine production (12.48 g/l for combined overexpression compared with 8.42 g/l for the control). These results suggest that overexpression of the aminotransferase-encoding NCgl0462 open reading frame plays an unequivocal role in the <smlcap>L</smlcap>-ornithine biosynthetic pathway, with overlapping substrate specificity in <i>C</i>. <i>glutamicum</i>.


Author(s):  
Deepak Chandra Saroj ◽  
Khundrakpam Herojit Singh ◽  
Avishek Anant ◽  
Bichitra K. Biswal

A recombinant version of a putative aspartate aminotransferase, AspB (encoded by the ORF Rv3565), fromMycobacterium tuberculosis(Mtb) was overexpressed inM. smegmatisand purified to homogeneity using liquid chromatography. Crystals of AspB were grown in a condition consisting of 0.2 Mammonium phosphate monobasic, 0.1 Mcalcium chloride dihydrate employing the hanging-drop vapour-diffusion method at 298 K. The crystals diffracted to a limit of 2.50 Å resolution and belonged to the orthorhombic space groupP212121, with unit-cell parametersa= 93.27,b= 98.19,c= 198.70 Å. The structure of AspB was solved by the molecular-replacement method using a putative aminotransferase fromSilicibacter pomeroyi(PDB entry 3h14) as the search model. The template shares 46% amino-acid sequence identity withMtbAspB. The crystal asymmetric unit contains four AspB molecules (theMrof each is 42 035 Da).


2010 ◽  
Vol 76 (8) ◽  
pp. 2500-2508 ◽  
Author(s):  
S. D. Braun ◽  
J. Hofmann ◽  
A. Wensing ◽  
M. S. Ullrich ◽  
H. Weingart ◽  
...  

ABSTRACT The epiphyte Pseudomonas syringae pv. syringae 22d/93 (Pss22d) produces the rare amino acid 3-methylarginine (MeArg), which is highly active against the closely related soybean pathogen Pseudomonas syringae pv. glycinea. Since these pathogens compete for the same habitat, Pss22d is a promising candidate for biocontrol of P. syringae pv. glycinea. The MeArg biosynthesis gene cluster codes for the S-adenosylmethionine (SAM)-dependent methyltransferase MrsA, the putative aminotransferase MrsB, and the amino acid exporter MrsC. Transfer of the whole gene cluster into Escherichia coli resulted in heterologous production of MeArg. The methyltransferase MrsA was overexpressed in E. coli as a His-tagged protein and functionally characterized (Km , 7 mM; k cat, 85 min−1). The highly selective methyltransferase MrsA transfers the methyl group from SAM into 5-guanidino-2-oxo-pentanoic acid to yield 5-guanidino-3-methyl-2-oxo-pentanoic acid, which then only needs to be transaminated to result in the antibiotic MeArg.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Pranav R. Prabhu ◽  
André O. Hudson

The aminotransferase gene family in the model plantArabidopsis thalianaconsists of 44 genes. Twenty six of these enzymes are classified as characterized meaning that the reaction(s) that the enzyme catalyzes are documented using experimental means. The remaining 18 enzymes are uncharacterized and are therefore deemed putative. Our laboratory is interested in elucidating the function(s) of the remaining putative aminotransferase enzymes. To this end, we have identified and partially characterized an aminotransferase (TAT) enzyme from Arabidopsis annotated by the locus tag At5g36160. The full-length cDNA was cloned and the purified recombinant enzyme was characterized usingin vitroandin vivoexperiments.In vitroanalysis showed that the enzyme is capable of interconverting L-Tyrosine and 4-hydroxyphenylpyruvate, and L-Phenylalanine and phenylpyruvate.In vivoanalysis by functional complementation showed that the gene was able to complement anE. coliwith a background of aminotransferase mutations that confers auxotrophy for L-Tyrosine and L-Phenylalanine.


2008 ◽  
Vol 64 (a1) ◽  
pp. C280-C281
Author(s):  
I. Miyahara ◽  
M. Matsumura ◽  
M. Goto ◽  
R. Omi ◽  
K. Hirotsu ◽  
...  

2006 ◽  
Vol 72 (5) ◽  
pp. 3330-3335 ◽  
Author(s):  
Dafni-Maria Kagkli ◽  
Pascal Bonnarme ◽  
C�cile Neuv�glise ◽  
Timothy M. Cogan ◽  
Serge Casaregola

ABSTRACT Kluyveromyces lactis is one of the cheese-ripening yeasts and is believed to contribute to the formation of volatile sulfur compounds (VSCs) through degradation of l-methionine. l-Methionine aminotransferase is potentially involved in the pathway that results in the production of methanethiol, a common precursor of VSCs. Even though this pathway has been studied previously, the genes involved have never been studied. In this study, on the basis of sequence homology, all the putative aminotransferase-encoding genes from K. lactis were cloned in an overproducing vector, pCXJ10, and their effects on the production of VSCs were analyzed. Two genes, KlARO8.1 and KlARO8.2, were found to be responsible for l-methionine aminotransferase activity. Transformants carrying these genes cloned in the pCXJ10 vector produced threefold-larger amounts of VSCs than the transformant containing the plasmid without any insert or other related putative aminotransferases produced.


2005 ◽  
Vol 187 (22) ◽  
pp. 7639-7646 ◽  
Author(s):  
Jan Marienhagen ◽  
Nicole Kennerknecht ◽  
Hermann Sahm ◽  
Lothar Eggeling

ABSTRACT Twenty putative aminotransferase (AT) proteins of Corynebacterium glutamicum, or rather pyridoxal-5′-phosphate (PLP)-dependent enzymes, were isolated and assayed among others with l-glutamate, l-aspartate, and l-alanine as amino donors and a number of 2-oxo-acids as amino acceptors. One outstanding AT identified is AlaT, which has a broad amino donor specificity utilizing (in the order of preference) l-glutamate > 2-aminobutyrate > l-aspartate with pyruvate as acceptor. Another AT is AvtA, which utilizes l-alanine to aminate 2-oxo-isovalerate, the l-valine precursor, and 2-oxo-butyrate. A second AT active with the l-valine precursor and that of the other two branched-chain amino acids, too, is IlvE, and both enzyme activities overlap partially in vivo, as demonstrated by the analysis of deletion mutants. Also identified was AroT, the aromatic AT, and this and IlvE were shown to have comparable activities with phenylpyruvate, thus demonstrating the relevance of both ATs for l-phenylalanine synthesis. We also assessed the activity of two PLP-containing cysteine desulfurases, supplying a persulfide intermediate. One of them is SufS, which assists in the sulfur transfer pathway for the Fe-S cluster assembly. Together with the identification of further ATs and the additional analysis of deletion mutants, this results in an overview of the ATs within an organism that may not have been achieved thus far.


Sign in / Sign up

Export Citation Format

Share Document