scholarly journals Evidence That Hyaluronidase Is Not Involved in Tissue Invasion of the Protozoan Parasite Entamoeba histolytica

2000 ◽  
Vol 68 (5) ◽  
pp. 3053-3055 ◽  
Author(s):  
Rosa Nickel ◽  
Robert Stern ◽  
Matthias Leippe

ABSTRACT As previous reports suggested that a hyaluronidase is involved in tissue invasion of Entamoeba histolytica, we searched for such an activity in trophozoite extracts. A hyaluronidase activity was not detectable in long-term cultures or in amoebae freshly passaged through a gerbil liver, as evidenced by four different techniques.

2018 ◽  
Vol 86 (9) ◽  
Author(s):  
Muhammad M. Hasan ◽  
Jose E. Teixeira ◽  
Christopher D. Huston

ABSTRACT Entamoeba histolytica is a protozoan parasite that causes invasive amoebiasis when it invades the human colon. Tissue invasion requires a shift from an adhesive lifestyle in the colonic lumen to a motile and extracellular matrix (ECM) degradative lifestyle in the colonic tissue layers. How the parasite regulates these two lifestyles is largely unknown. Previously, we showed that silencing the E. histolytica surface metalloprotease EhMSP-1 results in parasites that are hyperadherent and less motile. To better understand the molecular mechanism of this phenotype, we now show that the parasites with EhMSP-1 silenced cannot efficiently form specialized dot-like polymerized actin (F actin) structures upon interaction with the human ECM component fibronectin. We characterized these F actin structures and found that they are very short-lived structures that are the sites of fibronectin degradation. Motile mammalian cells form F actin structures called invadosomes that are similar in stability and function to these amoebic actin dots. Therefore, we propose here that E. histolytica forms amoebic invadosomes to facilitate colonic tissue invasion.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Helen C. Fernandes ◽  
Ana F. Costa ◽  
Michelle A. R. Freitas ◽  
Almir S. Martins ◽  
Jorge L. Pesquero ◽  
...  

Entamoeba histolyticais a protozoan parasite that presents a risk to the health of millions of people worldwide. Due to the existence of different clinical forms caused by the parasite and also different virulence levels presented by one strain, one would expect differences in the profile of gene transcripts between virulent and nonvirulent cultures. In this study we used the differential display to select gene segments related to invasiveness of amoeba. One Brazilian strain ofE. histolyticain two conditions, able or not to cause lesions in experimental animals, was used. RNA from this strain, was used to study the differential expression of genes. 29 specific gene fragments differentially expressed in the virulent strain were selected. By real-time PCR, six of these genes had confirmed their differential expression in the virulent culture. These genes may have important roles in triggering invasive amoebiasis and may be related to adaptation of trophozoites to difficulties encountered during colonization of the intestinal epithelium and liver tissue. Future studies with these genes may elucidate its actual role in tissue invasion byE. histolyticagenerating new pathways for diagnosis and treatment of amoebiasis.


Author(s):  
Victor Tsutsumi ◽  
Adolfo Martinez-Palomo ◽  
Kyuichi Tanikawa

The protozoan parasite Entamoeba histolytica is the causative agent of amebiasis in man. The trophozoite or motile form is a highly dynamic and pleomorphic cell with a great capacity to destroy tissues. Moreover, the parasite has the singular ability to phagocytize a variety of different live or death cells. Phagocytosis of red blood cells by E. histolytica trophozoites is a complex phenomenon related with amebic pathogenicity and nutrition.


2010 ◽  
Vol 9 (6) ◽  
pp. 926-933 ◽  
Author(s):  
Mohammad Abu Yousuf ◽  
Fumika Mi-ichi ◽  
Kumiko Nakada-Tsukui ◽  
Tomoyoshi Nozaki

ABSTRACT Pyridine nucleotide transhydrogenase (PNT) catalyzes the direct transfer of a hydride-ion equivalent between NAD(H) and NADP(H) in bacteria and the mitochondria of eukaryotes. PNT was previously postulated to be localized to the highly divergent mitochondrion-related organelle, the mitosome, in the anaerobic/microaerophilic protozoan parasite Entamoeba histolytica based on the potential mitochondrion-targeting signal. However, our previous proteomic study of isolated phagosomes suggested that PNT is localized to organelles other than mitosomes. An immunofluorescence assay using anti-E. histolytica PNT (EhPNT) antibody raised against the NADH-binding domain showed a distribution to the membrane of numerous vesicles/vacuoles, including lysosomes and phagosomes. The domain(s) required for the trafficking of PNT to vesicles/vacuoles was examined by using amoeba transformants expressing a series of carboxyl-terminally truncated PNTs fused with green fluorescent protein or a hemagglutinin tag. All truncated PNTs failed to reach vesicles/vacuoles and were retained in the endoplasmic reticulum. These data indicate that the putative targeting signal is not sufficient for the trafficking of PNT to the vesicular/vacuolar compartments and that full-length PNT is necessary for correct transport. PNT displayed a smear of >120 kDa on SDS-PAGE gels. PNGase F and tunicamycin treatment, chemical degradation of carbohydrates, and heat treatment of PNT suggested that the apparent aberrant mobility of PNT is likely attributable to its hydrophobic nature. PNT that is compartmentalized to the acidic compartments is unprecedented in eukaryotes and may possess a unique physiological role in E. histolytica.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Gretter Gonzalez Blanco ◽  
Jesus Valdes Flores ◽  
Maria Cristina Vélez del Valle ◽  
Guillermina García Rivera ◽  
Luis Ortíz Hernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document