scholarly journals Motility and Chemotaxis in Tissue Penetration of Oral Epithelial Cell Layers by Treponema denticola

2001 ◽  
Vol 69 (10) ◽  
pp. 6276-6283 ◽  
Author(s):  
Renate Lux ◽  
James N. Miller ◽  
No-Hee Park ◽  
Wenyuan Shi

ABSTRACT The ability to penetrate tissue is an important virulence factor for pathogenic spirochetes. Previous studies have recognized the role of motility in allowing pathogenic spirochetes to invade tissues and migrate to sites favorable for bacterial proliferation. However, the nature of the movements, whether they are random or controlled by chemotaxis systems, has yet to be established. In this study, we addressed the role of motility and chemotaxis in tissue penetration by the periodontal disease-associated oral spirochete Treponema denticola using an oral epithelial cell line-based experimental approach. Wild-type T. denticola ATCC 35405 was found to penetrate the tissue layers effectively, whereas a nonmotile mutant was unable to overcome the tissue barrier. Interestingly, the chemotaxis mutants also showed impaired tissue penetration. AcheA mutant that is motile but lacks the central kinase of the chemotaxis pathway showed only about 2 to 3% of the wild-type penetration rate. The two known chemoreceptors of T. denticola, DmcA and DmcB, also appear to be involved in the invasion process. The dmc mutants were actively motile but exhibited reduced tissue penetration of about 30 and 10% of the wild-type behavior, respectively. These data suggest that not only motility but also chemotaxis is involved in the tissue penetration byT. denticola.

2008 ◽  
Vol 53 (5) ◽  
pp. 443-452 ◽  
Author(s):  
Lai-Ping Zhong ◽  
Hong-Ya Pan ◽  
Xiao-Jian Zhou ◽  
Dong-Xia Ye ◽  
Lei Zhang ◽  
...  

2010 ◽  
Vol 9 (10) ◽  
pp. 1432-1440 ◽  
Author(s):  
Daniele E. Ejzykowicz ◽  
Norma V. Solis ◽  
Fabrice N. Gravelat ◽  
Josee Chabot ◽  
Xuexian Li ◽  
...  

ABSTRACT The transcription factors that regulate Aspergillus fumigatus interactions with host cells and virulence are incompletely defined. We investigated the role of the putative C2H2 transcription factor DvrA in governing these processes. Although DvrA was identified by its limited homology to Candida albicans Bcr1, a ΔdvrA mutant strain of A. fumigatus had wild-type adherence to host constituents in vitro. However, it had increased capacity to damage both endothelial cells and a pulmonary epithelial cell line compared to the ability of the wild-type strain and a ΔdvrA::dvrA-complemented strain. This increase in damage required direct contact between the mutant and host cells. The ΔdvrA mutant also stimulated greater CCL20, interleukin-8, and tumor necrosis factor mRNA expression in a pulmonary epithelial cell line compared to levels induced by the control strains. Also, it was resistant to nikkomycin Z, suggesting an altered cell wall composition. As predicted by these in vitro results, the ΔdvrA mutant had increased virulence and stimulated a greater pulmonary inflammatory response than the wild-type strain and ΔdvrA::dvrA-complemented strains in the nonneutropenic mouse model of invasive pulmonary aspergillosis. These results indicate that DvrA influences A. fumigatus virulence as well as its capacity to damage host cells and stimulate a proinflammatory response.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e33362 ◽  
Author(s):  
Celia Murciano ◽  
David L. Moyes ◽  
Manohursingh Runglall ◽  
Priscila Tobouti ◽  
Ayesha Islam ◽  
...  

1998 ◽  
Vol 66 (12) ◽  
pp. 6054-6057 ◽  
Author(s):  
Brian R. Dorn ◽  
K.-P. Leung ◽  
Ann Progulske-Fox

ABSTRACT Invasion of oral epithelial cells by pathogenic oral bacteria may represent an important virulence factor in the progression of periodontal disease. Here we report that a clinical isolate ofPrevotella intermedia, strain 17, was found to invade a human oral epithelial cell line (KB), whereas P. intermedia 27, another clinical isolate, and P. intermedia 25611, the type strain, were not found to invade the cell line. Invasion was quantified by the recovery of viable bacteria following a standard antibiotic protection assay and observed by electron microscopy. Cytochalasin D, cycloheximide, monodansylcadaverine, and low temperature (4°C) inhibited the internalization of P. intermedia 17. Antibodies raised against P. intermedia type C fimbriae and against whole cells inhibited invasion, but the anti-type-C-fimbria antibody inhibited invasion to a greater extent than the anti-whole-cell antibody. This work provides evidence that at least one strain ofP. intermedia can invade an oral epithelial cell line and that the type C fimbriae and a cytoskeletal rearrangement are required for this invasion.


Author(s):  
Eric P. Gilchrist ◽  
Mary Pat Moyer ◽  
Edward J. Shillitoe ◽  
Nanette Clare ◽  
Valerie A. Murrah

Sign in / Sign up

Export Citation Format

Share Document