scholarly journals Activation of Extracellular Signal-Related Protein Kinases 1 and 2 of the Mitogen-Activated Protein Kinase Family by Lipopolysaccharide Requires Plasma in Neutrophils from Adults and Newborns

2001 ◽  
Vol 69 (5) ◽  
pp. 3143-3149 ◽  
Author(s):  
S. Bonner ◽  
S. R. Yan ◽  
D. M. Byers ◽  
R. Bortolussi

ABSTRACT Neutrophils exposed to low concentrations of gram-negative lipopolysaccharide (LPS) become primed and have an increased oxidative response to a second stimulus (e.g., formyl-methionyl-leucyl-phenylalanine [fMLP]). In studies aimed at understanding newborn sepsis, we have shown that neutrophils of newborns are not primed in response to LPS. To further understand the processes involved in LPS-mediated priming of neutrophils, we explored the role of extracellular signal-related protein kinases (ERK 1 and 2) of the mitogen-activated protein kinase family. We found that LPS activated ERK 1 and 2 in cells of both adults and newborns and that activation was plasma dependent (maximal at ≥5%) through LPS-binding protein. Although fibronectin in plasma is required for LPS-mediated priming of neutrophils of adults assessed by fMLP-triggered oxidative burst, it was not required for LPS-mediated activation of ERK 1 and 2. LPS-mediated activation was dose and time dependent; maximal activation occurred with approximately 5 ng of LPS per ml and at 10 to 40 min. We used the inhibitor PD 98059 to study the role of ERK 1 and 2 in the LPS-primed fMLP-triggered oxidative burst. While Western blotting showed that 100 μM PD 98059 completely inhibited LPS-mediated ERK activation, oxidative response to fMLP by a chemiluminescence assay revealed that the same concentration inhibited the LPS-primed oxidative burst by only 40%. We conclude that in neutrophils, LPS-mediated activation of ERK 1 and 2 requires plasma and that this activation is not dependent on fibronectin. In addition, we found that the ERK pathway is not responsible for the lack of LPS priming in neutrophils of newborns but may be required for 40% of the LPS-primed fMLP-triggered oxidative burst in cells of adults.

1993 ◽  
Vol 13 (9) ◽  
pp. 5843-5853 ◽  
Author(s):  
K S Lee ◽  
L K Hines ◽  
D E Levin

The PKC1 gene of Saccharomyces cerevisiae encodes a homolog of mammalian protein kinase C that is required for yeast cell growth. Loss of PKC1 function results in cell lysis due to an inability to remodel the cell wall properly during growth. The PKC1 gene has been proposed to regulate a bifurcated pathway, on one branch of which function four putative protein kinases that catalyze a linear cascade of protein phosphorylation culminating in the activation of the mitogen-activated protein kinase homolog, Mpk1p. Here we describe two genes whose overexpression suppress both an mpk1 delta mutation and a pkc1 delta mutation. One of these genes is identical to the previously identified PPZ2 gene. The PPZ2 gene is predicted to encode a type 1-related protein phosphatase and is functionally redundant with a closely related gene, designated PPZ1. Deletion of both PPZ1 and PPZ2 resulted in a temperature-dependent cell lysis defect similar to that observed for bck1 delta, mkk1,2 delta, or mpk1 delta mutants. However, ppz1,2 delta mpk1 delta triple mutants displayed a cell lysis defect at all temperatures. The additivity of the ppz1,2 delta defect with the mpk1 delta defect, combined with the results of genetic epistasis experiments, suggested either that the PPZ1- and PPZ2-encoded protein phosphatases function on a branch of the PKC1-mediated pathway different from that defined by the protein kinases or that they play an auxiliary role in the pathway. The other suppressor gene, designated BCK2 (for bypass of C kinase), is predicted to encode a 92-kDa protein that is rich in serine and threonine residues. Genetic interactions between BCK2 and other pathway components suggested that BCK2 functions on a common pathway branch with PPZ1 and PPZ2.


1993 ◽  
Vol 13 (9) ◽  
pp. 5843-5853
Author(s):  
K S Lee ◽  
L K Hines ◽  
D E Levin

The PKC1 gene of Saccharomyces cerevisiae encodes a homolog of mammalian protein kinase C that is required for yeast cell growth. Loss of PKC1 function results in cell lysis due to an inability to remodel the cell wall properly during growth. The PKC1 gene has been proposed to regulate a bifurcated pathway, on one branch of which function four putative protein kinases that catalyze a linear cascade of protein phosphorylation culminating in the activation of the mitogen-activated protein kinase homolog, Mpk1p. Here we describe two genes whose overexpression suppress both an mpk1 delta mutation and a pkc1 delta mutation. One of these genes is identical to the previously identified PPZ2 gene. The PPZ2 gene is predicted to encode a type 1-related protein phosphatase and is functionally redundant with a closely related gene, designated PPZ1. Deletion of both PPZ1 and PPZ2 resulted in a temperature-dependent cell lysis defect similar to that observed for bck1 delta, mkk1,2 delta, or mpk1 delta mutants. However, ppz1,2 delta mpk1 delta triple mutants displayed a cell lysis defect at all temperatures. The additivity of the ppz1,2 delta defect with the mpk1 delta defect, combined with the results of genetic epistasis experiments, suggested either that the PPZ1- and PPZ2-encoded protein phosphatases function on a branch of the PKC1-mediated pathway different from that defined by the protein kinases or that they play an auxiliary role in the pathway. The other suppressor gene, designated BCK2 (for bypass of C kinase), is predicted to encode a 92-kDa protein that is rich in serine and threonine residues. Genetic interactions between BCK2 and other pathway components suggested that BCK2 functions on a common pathway branch with PPZ1 and PPZ2.


Sign in / Sign up

Export Citation Format

Share Document