scholarly journals Contribution of Fibronectin-Binding Protein to Pathogenesis of Streptococcus suis Serotype 2

2002 ◽  
Vol 70 (3) ◽  
pp. 1319-1325 ◽  
Author(s):  
Astrid de Greeff ◽  
Herma Buys ◽  
Robin Verhaar ◽  
Janny Dijkstra ◽  
Loek van Alphen ◽  
...  

ABSTRACT In the present study we investigated the role of the fibronectin (FN)- and fibrinogen (FGN)-binding protein (FBPS) in the pathogenesis of Streptococcus suis serotype 2 in piglets. The complete gene encoding FBPS from S. suis serotype 2 was cloned in Escherichia coli and sequenced. The occurrence of the gene in various serotypes was analyzed by hybridization studies. The FBPS protein was expressed in E. coli and purified, and binding to human FN and FGN was demonstrated. The induction of antibodies in piglets was studied upon infection. An isogenic mutant unable to produce FBPS was constructed, and the levels of virulence of the wild-type and mutant strains were compared in a competitive infection model in young piglets. Organ cultures showed that FBPS was not required for colonization of the tonsils but that FBPS played a role in the colonization of the specific organs involved in an S. suis infection. Therefore, the FBPS mutant was considered as an attenuated mutant.

2004 ◽  
Vol 72 (5) ◽  
pp. 3077-3080 ◽  
Author(s):  
Francesco Iannelli ◽  
Damiana Chiavolini ◽  
Susanna Ricci ◽  
Marco Rinaldo Oggioni ◽  
Gianni Pozzi

ABSTRACT The role of pneumococcal surface protein C (PspC; also called SpsA, CbpA, and Hic) in sepsis by Streptococcus pneumoniae was investigated in a murine infection model. The pspC gene was deleted in strains D39 (type 2) and A66 (type 3), and the mutants were tested by being injected intravenously into mice. The animals infected with the mutant strains showed a significant increase in survival, with the 50% lethal dose up to 250-fold higher than that for the wild type. Our findings indicate that PspC affords a decisive contribution to sepsis development.


2000 ◽  
Vol 182 (19) ◽  
pp. 5479-5485 ◽  
Author(s):  
Helena I. M. Boshoff ◽  
Valerie Mizrahi

ABSTRACT A pyrazinamidase (PZase)-deficient pncA mutant ofMycobacterium tuberculosis, constructed by allelic exchange, was used to investigate the effects of heterologous amidase gene expression on the susceptibility of this organism to pyrazinamide (PZA) and related amides. The mutant was highly resistant to PZA (MIC, >2,000 μg/ml), in accordance with the well-established role ofpncA in the PZA susceptibility of M. tuberculosis (A. Scorpio and Y. Zhang, Nat. Med. 2:662–667, 1996). Integration of the pzaA gene encoding the major PZase/nicotinamidase from Mycobacterium smegmatis (H. I. M. Boshoff and V. Mizrahi, J. Bacteriol. 180:5809–5814, 1998) or the M. tuberculosis pncA gene into the pncAmutant complemented its PZase/nicotinamidase defect. In bothpzaA- and pncA-complemented mutant strains, the PZase activity was detected exclusively in the cytoplasm, suggesting an intracellular localization for PzaA and PncA. ThepzaA-complemented strain was hypersensitive to PZA (MIC, ≤10 μg/ml) and nicotinamide (MIC, ≥20 μg/ml) and was also sensitive to benzamide (MIC, 20 μg/ml), unlike the wild-type andpncA-complemented mutant strains, which were highly resistant to this amide (MIC, >500 μg/ml). This finding was consistent with the observation that benzamide is hydrolyzed by PzaA but not by PncA. Overexpression of PzaA also conferred sensitivity to PZA, nicotinamide, and benzamide on M. smegmatis (MIC, 150 μg/ml in all cases) and rendered Escherichia colihypersensitive for growth at low pH.


2018 ◽  
Vol 118 ◽  
pp. 322-329 ◽  
Author(s):  
Feng Zheng ◽  
Zhu-Qing Shao ◽  
Xina Hao ◽  
Qianqian Wu ◽  
Chaolong Li ◽  
...  

2018 ◽  
Vol 118 (07) ◽  
pp. 1230-1241 ◽  
Author(s):  
Jorien Claes ◽  
Bartosz Ditkowski ◽  
Laurens Liesenborghs ◽  
Tiago Veloso ◽  
Jose Entenza ◽  
...  

AbstractAdhesion of Staphylococcus aureus to endothelial cells (ECs) is paramount in infective endocarditis. Bacterial proteins such as clumping factor A (ClfA) and fibronectin binding protein A (FnbpA) mediate adhesion to EC surface molecules and (sub)endothelial matrix proteins including fibrinogen (Fg), fibrin, fibronectin (Fn) and von Willebrand factor (vWF). We studied the influence of shear flow and plasma on the binding of ClfA and FnbpA (including its sub-domains A, A16+, ABC, CD) to coverslip-coated vWF, Fg/fibrin, Fn or confluent ECs, making use of Lactococcus lactis, expressing these adhesins heterologously. Global adherence profiles were similar in static and flow conditions. In the absence of plasma, L. lactis-clfA binding to Fg increased with shear forces, whereas binding to fibrin did not. The degree of adhesion of L. lactis-fnbpA to EC-bound Fn and of L. lactis-clfA to EC-bound Fg, furthermore, was similar to that of L. lactis-clfA to coated vWF domain A1, in the presence of vWF-binding protein (vWbp). Yet, in plasma, L. lactis-clfA adherence to activated EC-vWF/vWbp dropped over 10 minutes by 80% due to vWF-hydrolysis by a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13 and that of L. lactis-fnbpA likewise by > 70% compared to the adhesion in absence of plasma. In contrast, plasma Fg supported high L. lactis-clfA binding to resting and activated ECs. Or, in plasma S. aureus adhesion to active endothelium occurs mainly via two complementary pathways: a rapid but short-lived vWF/vWbp pathway and a stable integrin-coupled Fg-pathway. Hence, the pharmacological inhibition of ClfA-Fg interactions may constitute a valuable additive treatment in infective endocarditis.


2005 ◽  
Vol 33 (1) ◽  
pp. 195-197 ◽  
Author(s):  
N.A. Filenko ◽  
D.F. Browning ◽  
J.A. Cole

HCP (hybrid-cluster protein) contains two Fe/S clusters, one of which is a hybrid [4Fe-2S-2O] cluster. Despite intensive study, its physiological function has not been reported. The Escherichia coli hcp gene is located in a two-gene operon with hcr, which encodes an NADH-dependent HCP reductase. E. coli HCP is detected after anaerobic growth with nitrate or nitrite: possible roles for it in hydroxylamine or nitric oxide reduction have been proposed. To study the regulation and role of HCP, an hcp::lacZ fusion was constructed and transformed into fnr, arcA and norR mutant strains of E. coli. Transcription from the hcp promoter was induced during anaerobic growth. Only the fnr mutant was defective in hcp expression. Nitrate- and nitrite-induced transcription from the hcp promoter was activated by the response regulator proteins NarL and NarP. Gel retardation assays were used to show that FNR (fumarate-nitrate regulation) and NarL form a complex with the hcp promoter. Transcription of the hcp-hcr operon initiates at a thymine nucleotide located 31 bp upstream of the translation-initiation codon. HCP has been overexpressed from a recombinant plasmid for physiological studies.


Biochimie ◽  
1985 ◽  
Vol 67 (7-8) ◽  
pp. 849-851 ◽  
Author(s):  
P DUPLAY ◽  
H BEDOUELLE ◽  
S SZMELCMAN ◽  
M HOFNUNG

PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0223864 ◽  
Author(s):  
Jean-Philippe Auger ◽  
Servane Payen ◽  
David Roy ◽  
Audrey Dumesnil ◽  
Mariela Segura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document