scholarly journals Increased Adherence to Caco-2 Cells Caused by Disruption of the yhiE and yhiF Genes in Enterohemorrhagic Escherichia coli O157:H7

2003 ◽  
Vol 71 (5) ◽  
pp. 2598-2606 ◽  
Author(s):  
Ichiro Tatsuno ◽  
Keiji Nagano ◽  
Kazuki Taguchi ◽  
Li Rong ◽  
Hiroshi Mori ◽  
...  

ABSTRACT Adherence of enterohemorrhagic Escherichia coli (EHEC) to intestinal epithelium is essential for initiation of infections, including diarrhea, and expression of the genes of the locus of enterocyte effacement (LEE) is thought to be crucial for adherence. To identify genes involved in modulating the adherent capacity, bacteria collected from an EHEC O157:H7 strain (O157Sakai) mutagenized by mini-Tn5Km2 were screened for their ability to increase the number of microcolonies (MC) on Caco-2 cells and eight mutants with increased adherence were isolated. Analysis of the mini-Tn5Km2-flanked DNA sequences indicated that one possessed the insertion within an O157 antigen gene cluster, another possessed the insertion within the yhiF gene, and the remaining six mutants had their insertions in the yhiE gene. yhiE and yhiF products share amino acid homology (23% identity) to each other and with members of the LuxR family, which are known as transcriptional regulatory proteins. The mutant having the insertion within the O157 antigen gene cluster did not express the O157 side chain (as determined by agglutination test and immunoblotting with polyclonal O157-specific antiserum), unlike the other seven mutants. Importantly, the other mutants showed enhanced type III secretion. Levels of the related mRNAs of genes of the LEE, but not that of ler mRNA, were also increased compared with those in the wild type. Indeed, when we introduced an in-frame deletion into the yhiE or yhiF gene in O157Sakai, the capacity of the resultant mutants to adhere to Caco-2 cells was greatly increased. When one of the yhiE insertion mutants was orally inoculated into ICR mice, the number of bacteria shed into feces by day 14 was greater than that for the wild type. These results suggest that yhiE and yhiF are involved in the adherence of O157Sakai to epithelial cells as negative regulators for the expression of the genes required for the type III secretion system.

2007 ◽  
Vol 56 (5) ◽  
pp. 620-628 ◽  
Author(s):  
Matthew W. Gilmour ◽  
Adam B. Olson ◽  
Ashleigh K. Andrysiak ◽  
Lai-King Ng ◽  
Linda Chui

Serogroup classifications based upon the O-somatic antigen of Shiga toxin-producing Escherichia coli (STEC) provide significant epidemiological information on clinical isolates. Each O-antigen determinant is encoded by a unique cluster of genes present between the gnd and galF chromosomal genes. Alternatively, serogroup-specific polymorphisms might be encoded in loci that are encoded outside of the O-antigen gene cluster. Segments of the core bacterial loci mdh, gnd, gcl, ppk, metA, ftsZ, relA and metG for 30 O26 STEC strains have previously been sequenced, and comparative analyses to O157 distinguished these two serogroups. To screen these loci for serogroup-specific traits within a broader range of clinically significant serogroups, DNA sequences were obtained for 19 strains of 10 additional STEC serogroups. Unique alleles were observed at the gnd locus for each examined STEC serogroup, and this correlation persisted when comparative analyses were extended to 144 gnd sequences from 26 O-serogroups (comprising 42 O : H-serotypes). These included O157, O121, O103, O26, O5 : non-motile (NM), O145 : NM, O113 : H21, O111 : NM and O117 : H7 STEC; and furthermore, non-toxin encoding O157, O26, O55, O6 and O117 strains encoded distinct gnd alleles compared to STEC strains of the same serogroup. DNA sequencing of a 643 bp region of gnd was, therefore, sufficient to minimally determine the O-antigen of STEC through molecular means, and the location of gnd next to the O-antigen gene cluster offered additional support for the co-inheritance of these determinants. The gnd DNA sequence-based serogrouping method could improve the typing capabilities for STEC in clinical laboratories, and was used successfully to characterize O121 : H19, O26 : H11 and O177 : NM clinical isolates prior to serological confirmation during outbreak investigations.


mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Cedric N. Berger ◽  
Valerie F. Crepin ◽  
Kobi Baruch ◽  
Aurelie Mousnier ◽  
Ilan Rosenshine ◽  
...  

ABSTRACTTranslocation of effector proteins via a type III secretion system (T3SS) is a widespread infection strategy among Gram-negative bacterial pathogens. Each pathogen translocates a particular set of effectors that subvert cell signaling in a way that suits its particular infection cycle. However, as effector unbalance might lead to cytotoxicity, the pathogens must employ mechanisms that regulate the intracellular effector concentration. We present evidence that the effector EspZ controls T3SS effector translocation from enteropathogenic (EPEC) and enterohemorrhagic (EHEC)Escherichia coli. Consistently, an EPECespZmutant is highly cytotoxic. Following ectopic expression, we found that EspZ inhibited the formation of actin pedestals as it blocked the translocation of Tir, as well as other effectors, including Map and EspF. Moreover, during infection EspZ inhibited effector translocation following superinfection. Importantly, while EspZ of EHEC O157:H7 had a universal “translocation stop” activity, EspZ of EPEC inhibited effector translocation from typical EPEC strains but not from EHEC O157:H7 or its progenitor, atypical EPEC O55:H7. We found that the N and C termini of EspZ, which contains two transmembrane domains, face the cytosolic leaflet of the plasma membrane at the site of bacterial attachment, while the extracellular loop of EspZ is responsible for its strain-specific activity. These results show that EPEC and EHEC acquired a sophisticated mechanism to regulate the effector translocation.IMPORTANCEEnteropathogenicEscherichia coli(EPEC) and enterohemorrhagicE. coli(EHEC) are important diarrheal pathogens responsible for significant morbidity and mortality in developing countries and the developed world, respectively. The virulence strategy of EPEC and EHEC revolves around a conserved type III secretion system (T3SS), which translocates bacterial proteins known as effectors directly into host cells. Previous studies have shown that when cells are infected in two waves with EPEC, the first wave inhibits effector translocation by the second wave in a T3SS-dependent manner, although the factor involved was not known. Importantly, we identified EspZ as the effector responsible for blocking protein translocation following a secondary EPEC infection. Interestingly, we found that while EspZ of EHEC can block protein translocation from both EPEC and EHEC strains, EPEC EspZ cannot block translocation from EHEC. These studies show that EPEC and EHEC employ a novel infection strategy to regulate T3SS translocation.


2002 ◽  
Vol 70 (6) ◽  
pp. 3085-3093 ◽  
Author(s):  
Vanessa Sperandio ◽  
Caiyi C. Li ◽  
James B. Kaper

ABSTRACT The locus of enterocyte effacement (LEE) is a chromosomal pathogenicity island that encodes the proteins involved in the formation of the attaching and effacing lesions by enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). The LEE comprises 41 open reading frames organized in five major operons, LEE1, LEE2, LEE3, tir (LEE5), and LEE4, which encode a type III secretion system, the intimin adhesin, the translocated intimin receptor (Tir), and other effector proteins. The first gene of LEE1 encodes the Ler regulator, which activates all the other genes within the LEE. We previously reported that the LEE genes were activated by quorum sensing through Ler (V. Sperandio, J. L. Mellies, W. Nguyen, S. Shin, and J. B. Kaper, Proc. Natl. Acad. Sci. USA 96:15196-15201, 1999). In this study we report that a putative regulator in the E. coli genome is itself activated by quorum sensing. This regulator is encoded by open reading frame b3243; belongs to the LysR family of regulators; is present in EHEC, EPEC, and E. coli K-12; and shares homology with the AphB and PtxR regulators of Vibrio cholerae and Pseudomonas aeruginosa, respectively. We confirmed the activation of b3243 by quorum sensing by using transcriptional fusions and renamed this regulator quorum-sensing E. coli regulator A (QseA). We observed that QseA activated transcription of ler and therefore of the other LEE genes. An EHEC qseA mutant had a striking reduction of type III secretion activity, which was complemented when qseA was provided in trans. Similar results were also observed with a qseA mutant of EPEC. The QseA regulator is part of the regulatory cascade that regulates EHEC and EPEC virulence genes by quorum sensing.


2005 ◽  
Vol 187 (23) ◽  
pp. 8164-8171 ◽  
Author(s):  
Diana Ideses ◽  
Uri Gophna ◽  
Yossi Paitan ◽  
Roy R. Chaudhuri ◽  
Mark J. Pallen ◽  
...  

ABSTRACT The type III secretion system (T3SS) is an important virulence factor used by several gram-negative bacteria to deliver effector proteins which subvert host cellular processes. Enterohemorrhagic Escherichia coli O157 has a well-defined T3SS involved in attachment and effacement (ETT1) and critical for virulence. A gene cluster potentially encoding an additional T3SS (ETT2), which resembles the SPI-1 system in Salmonella enterica, was found in its genome sequence. The ETT2 gene cluster has since been found in many E. coli strains, but its in vivo role is not known. Many of the ETT2 gene clusters carry mutations and deletions, raising the possibility that they are not functional. Here we show the existence in septicemic E. coli strains of an ETT2 gene cluster, ETT2sepsis, which, although degenerate, contributes to pathogenesis. ETT2sepsis has several premature stop codons and a large (5 kb) deletion, which is conserved in 11 E. coli strains from cases of septicemia and newborn meningitis. A null mutant constructed to remove genes coding for the putative inner membrane ring of the secretion complex exhibited significantly reduced virulence. These results are the first demonstration of the importance of ETT2 for pathogenesis.


2004 ◽  
Vol 72 (9) ◽  
pp. 5452-5459 ◽  
Author(s):  
Sivan Dahan ◽  
Stuart Knutton ◽  
Robert K. Shaw ◽  
Valerie F. Crepin ◽  
Gordon Dougan ◽  
...  

ABSTRACT Using a DNA microarray, we determined changes in enterohemorrhagic Escherichia coli O157:H7 gene expression during binding to plasma membranes. Analysis of the complete transcriptomes of the bound bacteria revealed increased levels of stress-associated mRNAs and decreased levels of mRNA encoding proteins involved in translation and type III secretion.


2002 ◽  
Vol 184 (10) ◽  
pp. 2620-2625 ◽  
Author(s):  
Lei Wang ◽  
Sandy Huskic ◽  
Adam Cisterne ◽  
Deborah Rothemund ◽  
Peter R. Reeves

ABSTRACT Escherichia coli O55 is an important antigen which is often associated with enteropathogenic E. coli clones. We sequenced the genes responsible for its synthesis and identified genes for O-antigen polymerase, O-antigen flippase, four enzymes involved in GDP-colitose synthesis, and three glycosyltransferases, all by comparison with known genes. Upstream of the normal O-antigen region there is a gne gene, which encodes a UDP-GlcNAc epimerase for converting UDP-GlcNAc to UDP-GalNAc and is essential for O55 antigen synthesis. The O55 gne product has only 20 and 26% identity to the gne genes of Pseudomonas aeruginosa and E. coli O113, respectively. We also found evidence for the O55 gene cluster's having evolved from another gene cluster by gain and loss of genes. Only three of the GDP-colitose pathway genes are in the usual location, the other two being separated, although nearby. It is thought that the E. coli O157:H7 clone evolved from the O55:H7 clone in part by transfer of the O157 gene cluster into an O55 lineage. Comparison of genes flanking the O-antigen gene clusters of the O55:H7 and O157:H7 clones revealed one recombination site within the galF gene and located the other between the hisG and amn genes. Genes outside the recombination sites are 99.6 to 100% identical in the two clones, while most genes thought to have transferred with the O157 gene cluster are 95 to 98% identical.


2004 ◽  
Vol 186 (11) ◽  
pp. 3547-3560 ◽  
Author(s):  
Chuan-Peng Ren ◽  
Roy R. Chaudhuri ◽  
Amanda Fivian ◽  
Christopher M. Bailey ◽  
Martin Antonio ◽  
...  

ABSTRACT ETT2 is a second cryptic type III secretion system in Escherichia coli which was first discovered through the analysis of genome sequences of enterohemorrhagic E. coli O157:H7. Comparative analyses of Escherichia and Shigella genome sequences revealed that the ETT2 gene cluster is larger than was previously thought, encompassing homologues of genes from the Spi-1, Spi-2, and Spi-3 Salmonella pathogenicity islands. ETT2-associated genes, including regulators and chaperones, were found at the same chromosomal location in the majority of genome-sequenced strains, including the laboratory strain K-12. Using a PCR-based approach, we constructed a complete tiling path through the ETT2 gene cluster for 79 strains, including the well-characterized E. coli reference collection supplemented with additional pathotypes. The ETT2 gene cluster was found to be present in whole or in part in the majority of E. coli strains, whether pathogenic or commensal, with patterns of distribution and deletion mirroring the known phylogenetic structure of the species. In almost all strains, including enterohemorrhagic E. coli O157:H7, ETT2 has been subjected to varying degrees of mutational attrition that render it unable to encode a functioning secretion system. A second type III secretion system-associated locus that likely encodes the ETT2 translocation apparatus was found in some E. coli strains. Intact versions of both ETT2-related clusters are apparently present in enteroaggregative E. coli strain O42.


Sign in / Sign up

Export Citation Format

Share Document