scholarly journals Adenylate Cyclase Toxin from Bordetella pertussis Synergizes with Lipopolysaccharide To Promote Innate Interleukin-10 Production and Enhances the Induction of Th2 and Regulatory T Cells

2004 ◽  
Vol 72 (3) ◽  
pp. 1568-1579 ◽  
Author(s):  
Pádraig J. Ross ◽  
Ed C. Lavelle ◽  
Kingston H. G. Mills ◽  
Aoife P. Boyd

ABSTRACT Adenylate cyclase toxin (CyaA) from Bordetella pertussis can subvert host immune responses allowing bacterial colonization. Here we have examined its adjuvant and immunomodulatory properties and the possible contribution of lipopolysaccharide (LPS), known to be present in purified CyaA preparations. CyaA enhanced antigen-specific interleukin-5 (IL-5) and IL-10 production and immunoglobulin G1 antibodies to coadministered antigen in vivo. Antigen-specific CD4+-T-cell clones generated from mice immunized with antigen and CyaA had cytokine profiles characteristic of Th2 or type 1 regulatory T (Tr1) cells. Since innate immune cells direct the induction of T-cell subtypes, we examined the influence of CyaA on activation of dendritic cells (DC) and macrophages. CyaA significantly augmented LPS-induced IL-6 and IL-10 and inhibited LPS-driven tumor necrosis factor alpha and IL-12p70 production from bone marrow-derived DC and macrophages. CyaA also enhanced cell surface expression of CD80, CD86, and major histocompatibility class II on immature DC. The stimulatory activity of our CyaA preparation for IL-10 production and CD80, CD86, and major histocompatibility complex class II expression was attenuated following the addition of polymyxin B or with the use of DC from Toll-like receptor (TLR) 4-defective mice. However, treatment of DC with LPS alone at the concentration present in the CyaA preparation (0.2 ng/ml) failed to activate DC in vitro. Our findings demonstrate that activation of innate cells in vitro by CyaA is dependent on a second signal through a TLR and that CyaA can promote Th2/Tr1-cell responses by inhibiting IL-12 and promoting IL-10 production by DC and macrophages.

mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Jawid Nazir Ahmad ◽  
Jana Holubova ◽  
Oldrich Benada ◽  
Olga Kofronova ◽  
Ludek Stehlik ◽  
...  

ABSTRACTMonocytes arriving at the site of infection differentiate into functional effector macrophages to replenish the resident sentinel cells.Bordetella pertussis, the pertussis agent, secretes an adenylate cyclase toxin-hemolysin (CyaA) that binds myeloid phagocytes through complement receptor 3 (CD11b/CD18) and swiftly delivers its adenylyl cyclase enzyme domain into phagocytes. This ablates the bactericidal capacities of phagocytes through massive and unregulated conversion of cytosolic ATP into the key signaling molecule cAMP. We show that exposure of primary human monocytes to as low a concentration as 22.5 pM CyaA, or a low (2:1) multiplicity of infection by CyaA-producingB. pertussisbacteria, blocks macrophage colony-stimulating factor (M-CSF)-driven differentiation of monocytes. CyaA-induced cAMP signaling mediated through the activity of protein kinase A (PKA) efficiently blocked expression of macrophage markers, and the monocytes exposed to 22.5 pM CyaA failed to acquire the characteristic intracellular complexity of mature macrophage cells. Neither M-CSF-induced endoplasmic reticulum (ER) expansion nor accumulation of Golgi bodies, mitochondria, or lysosomes was observed in toxin-exposed monocytes, which remained small and poorly phagocytic and lacked pseudopodia. Exposure to 22.5 pM CyaA toxin provoked loss of macrophage marker expression onin vitrodifferentiated macrophages, as well as on primary human alveolar macrophages, which appeared to dedifferentiate into monocyte-like cells with upregulated CD14 levels. This is the first report that terminally differentiated tissue-resident macrophage cells can be dedifferentiatedin vitro. The results suggest that blocking of monocyte-to-macrophage transition and/or dedifferentiation of the sentinel cells of innate immunity through cAMP-elevating toxin action may represent a novel immune evasion strategy of bacterial pathogens.IMPORTANCEMacrophages are key sentinel cells of the immune system, and, as such, they are targeted by the toxins produced by the pertussis agentBordetella pertussis. The adenylate cyclase toxin (CyaA) mediates immune evasion ofB. pertussisby suspending the bactericidal activities of myeloid phagocytes. We reveal a novel mechanism of potential subversion of host immunity, where CyaA at very low (22 pM) concentrations could inhibit maturation of human monocyte precursors into the more phagocytic macrophage cells. Furthermore, exposure to low CyaA amounts has been shown to trigger dedifferentiation of mature primary human alveolar macrophages back into monocyte-like cells. This unprecedented capacity is likely to promote survival of the pathogen in the airways, both by preventing maturation of monocytes attracted to the site of infection into phagocytic macrophages and by dedifferentiation of the already airway-resident sentinel cells.


2014 ◽  
Vol 21 (5) ◽  
pp. 641-650 ◽  
Author(s):  
Rachel M. Stenger ◽  
Hugo D. Meiring ◽  
Betsy Kuipers ◽  
Martien Poelen ◽  
Jacqueline A. M. van Gaans-van den Brink ◽  
...  

ABSTRACTKnowledge of naturally processedBordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presentedB. pertussisCD4+T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4+T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the naturalB. pertussisepitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition ofB. pertussis. A more complete understanding of hallmarks inB. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies.


2008 ◽  
Vol 76 (7) ◽  
pp. 2822-2832 ◽  
Author(s):  
Silvia Rossi Paccani ◽  
Federica Dal Molin ◽  
Marisa Benagiano ◽  
Daniel Ladant ◽  
Mario M. D'Elios ◽  
...  

ABSTRACT The adenylate cyclase toxin (CyaA) released by Bordetella pertussis is an essential virulence factor for colonization of the host. This toxin inhibits migration and activation of phagocytes, thereby preventing bacterial killing. In addition, CyaA interferes with the initiation of adaptive immunity by misdirecting dendritic cell differentiation to a suppressive rather than stimulatory phenotype. Here we show that CyaA directly affects adaptive responses by catalyzing cyclic AMP (cAMP) production in peripheral blood lymphocytes. Treatment with CyaA resulted in profound impairment of T-lymphocyte activation and chemotaxis. These effects resulted from inhibition of T-cell antigen receptor and chemokine receptor signaling via a cAMP/protein kinase A (PKA)-dependent pathway. A comparison of the activities of CyaA on T-cell and macrophage activation and migration revealed that the biological effects of the toxin were paralleled by inhibition of the activation of mitogen-activated protein (MAP) kinases, highlighting the conclusion that the ubiquitous and evolutionarily conserved MAP kinase modules are common targets of the PKA-mediated immunosuppressant activities of CyaA and underlining the potential of cAMP-elevating toxins as a means of evasion of immunity by bacterial pathogens.


2017 ◽  
Vol 85 (6) ◽  
Author(s):  
Karolina Skopova ◽  
Barbora Tomalova ◽  
Ivan Kanchev ◽  
Pavel Rossmann ◽  
Martina Svedova ◽  
...  

ABSTRACT The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) of Bordetella pertussis targets phagocytic cells expressing the complement receptor 3 (CR3, Mac-1, αMβ2 integrin, or CD11b/CD18). CyaA delivers into cells an N-terminal adenylyl cyclase (AC) enzyme domain that is activated by cytosolic calmodulin and catalyzes unregulated conversion of cellular ATP into cyclic AMP (cAMP), a key second messenger subverting bactericidal activities of phagocytes. In parallel, the hemolysin (Hly) moiety of CyaA forms cation-selective hemolytic pores that permeabilize target cell membranes. We constructed the first B. pertussis mutant secreting a CyaA toxin having an intact capacity to deliver the AC enzyme into CD11b-expressing (CD11b+) host phagocytes but impaired in formation of cell-permeabilizing pores and defective in cAMP elevation in CD11b− cells. The nonhemolytic AC+ Hly− bacteria inhibited the antigen-presenting capacities of coincubated mouse dendritic cells in vitro and skewed their Toll-like receptor (TLR)-triggered maturation toward a tolerogenic phenotype. The AC+ Hly− mutant also infected mouse lungs as efficiently as the parental AC+ Hly+ strain. Hence, elevation of cAMP in CD11b− cells and/or the pore-forming capacity of CyaA were not required for infection of mouse airways. The latter activities were, however, involved in bacterial penetration across the epithelial layer, enhanced neutrophil influx into lung parenchyma during sublethal infections, and the exacerbated lung pathology and lethality of B. pertussis infections at higher inoculation doses (>107 CFU/mouse). The pore-forming activity of CyaA further synergized with the cAMP-elevating activity in downregulation of major histocompatibility complex class II (MHC-II) molecules on infiltrating myeloid cells, likely contributing to immune subversion of host defenses by the whooping cough agent.


2000 ◽  
Vol 68 (1) ◽  
pp. 247-256 ◽  
Author(s):  
Radim Osička ◽  
Adriana Osičková ◽  
Tümay Basar ◽  
Pierre Guermonprez ◽  
Marie Rojas ◽  
...  

ABSTRACT Bordetella pertussis adenylate cyclase (AC) toxin-hemolysin (ACT-Hly) can penetrate a variety of eukaryotic cells. Recombinant AC toxoids have therefore been recently used for delivery of CD8+ T-cell epitopes into antigen-presenting cells in vivo and for induction of protective antiviral, as well as therapeutic antitumor cytotoxic T-cell responses. We have explored the carrier potential of the ACT molecule by insertional mutagenesis scanning for new permissive sites, at which integration of two- to nine-residue-long peptides does not interfere with membrane interaction and translocation of ACT. A model CD8+ T-cell epitope of ovalbumin was incorporated at 10 of these permissive sites along the toxin molecule, and the capacity of ACT constructs to penetrate into cell cytosol and deliver the epitope into the major histocompatibility complex (MHC) class I antigen processing and presentation pathway was examined. While all six constructs bearing the epitope within the Hly portion of ACT failed to deliver the epitope to the MHC class I molecules, all four toxoids with inserts within different permissive sites in the AC domain efficiently delivered the epitope into this cytosolic pathway, giving rise to stimulation of a specific CD8+ T-cell hybridoma. The results suggest that, in contrast to the AC domain, the hemolysin moiety of ACT does not reach the cytosolic entry of the MHC class I pathway.


Gene ◽  
1996 ◽  
Vol 180 (1-2) ◽  
pp. 91-99 ◽  
Author(s):  
Gareth D. Westrop ◽  
E.Kalantar Hormozi ◽  
Nuno A. Da Costa ◽  
Roger Parton ◽  
John G. Coote

2002 ◽  
Vol 70 (2) ◽  
pp. 1002-1005 ◽  
Author(s):  
Jir̆ina Loucká ◽  
Géraldine Schlecht ◽  
Jana Vodolánová ◽  
Claude Leclerc ◽  
Peter S̆ebo

ABSTRACT Recombinant adenylate cyclase toxoids are shown to deliver inserted foreign CD4+-T-cell epitopes into the major histocompatibility complex class II presentation pathway, inducing a specific CD4+-T-cell response in vivo and yielding in vitro stimulation of specific CD4+ T cells at a 100-times-higher molar efficiency than the free peptide containing the epitope.


2006 ◽  
Vol 74 (12) ◽  
pp. 6797-6805 ◽  
Author(s):  
Gordon Y. C. Cheung ◽  
Dorothy Xing ◽  
Sandra Prior ◽  
Michael J. Corbel ◽  
Roger Parton ◽  
...  

ABSTRACT Four recombinant forms of the cell-invasive adenylate cyclase toxin (CyaA) of Bordetella pertussis were compared for the ability to enhance protection against B. pertussis in mice when coadministered with an acellular pertussis vaccine (ACV). The four forms were as follows: fully functional CyaA, a CyaA form lacking adenylate cyclase enzymatic activity (CyaA*), and the nonacylated forms of these toxins, i.e., proCyaA and proCyaA*, respectively. None of these forms alone conferred significant (P > 0.05) protection against B. pertussis in a murine intranasal challenge model. Mice immunized with ACV alone showed significant (P < 0.05) reductions in bacterial numbers in the lungs after intranasal challenge compared with those for control mice. When administered with ACV, both CyaA and CyaA* further reduced bacterial numbers in the lungs of mice after intranasal challenge compared with those for ACV-immunized mice, but the enhanced protection was only significant (P < 0.05) with CyaA*. Coadministration of CyaA* with ACV caused a significant (P < 0.05) increase in immunoglobulin G2a antibody levels against pertactin compared with those in mice immunized with ACV alone. Spleen cells from mice immunized with ACV plus CyaA* secreted larger amounts of interleukin-5 (IL-5), IL-6, gamma interferon (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) than did cells from mice immunized with ACV plus CyaA or ACV alone after stimulation in vitro with a mixture of B. pertussis antigens. Spleen cells from mice immunized with ACV plus CyaA* also secreted larger amounts of IFN-γ and GM-CSF than did cells from mice immunized with CyaA* alone after stimulation in vitro with CyaA*. Macrophages from mice immunized with ACV plus CyaA* produced significantly (P < 0.05) higher levels of nitric oxide than did macrophages from mice immunized with CyaA* alone, ACV alone, or ACV plus CyaA after stimulation in vitro with a mixture of B. pertussis antigens or heat-killed B. pertussis cells. These data suggest that the enhancement of protection provided by CyaA* was due to an augmentation of both Th1 and Th2 immune responses to B. pertussis antigens.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 83
Author(s):  
Daniel Ladant

The adenylate cyclase toxin, CyaA, is one of the key virulent factors produced by Bordetella pertussis, the causative agent of whooping cough. This toxin primarily targets innate immunity to facilitate bacterial colonization of the respiratory tract. CyaA exhibits several remarkable characteristics that have been exploited for various applications in vaccinology and other biotechnological purposes. CyaA has been engineered as a potent vaccine vehicle to deliver antigens into antigen-presenting cells, while the adenylate cyclase catalytic domain has been used to design a robust genetic assay for monitoring protein–protein interactions in bacteria. These two biotechnological applications are briefly summarized in this chapter.


Sign in / Sign up

Export Citation Format

Share Document