scholarly journals Conserved Structure and Function in the Granulysin and NK-Lysin Peptide Family

2005 ◽  
Vol 73 (10) ◽  
pp. 6332-6339 ◽  
Author(s):  
Charlotte M. A. Linde ◽  
Susanna Grundström ◽  
Erik Nordling ◽  
Essam Refai ◽  
Patrick J. Brennan ◽  
...  

ABSTRACT Granulysin and NK-lysin are homologous bactericidal proteins with a moderate residue identity (35%), both of which have antimycobacterial activity. Short loop peptides derived from the antimycobacterial domains of granulysin, NK-lysin, and a putative chicken NK-lysin were examined and shown to have comparable antimycobacterial but variable Escherichia coli activities. The known structure of the NK-lysin loop peptide was used to predict the structure of the equivalent peptides of granulysin and chicken NK-lysin by homology modeling. The last two adopted a secondary structure almost identical to that of NK-lysin. All three peptides form very similar three-dimensional (3-D) architectures in which the important basic residues assume the same positions in space. The basic residues in granulysin are arginine, while those in NK-lysin and chicken NK-lysin are a mixture of arginine and lysine. We altered the ratio of arginine to lysine in the granulysin fragment to examine the importance of basic residues for antimycobacterial activity. The alteration of the amino acids reduced the activity against E. coli to a larger extent than that against Mycobacterium smegmatis. In granulysin, the arginines in the loop structure are not crucial for antimycobacterial activity but are important for cytotoxicity. We suggest that the antibacterial domains of the related proteins granulysin, NK-lysin, and chicken NK-lysin have conserved their 3-D structure and their function against mycobacteria.

Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Author(s):  
M. Boublik ◽  
N. Robakis ◽  
J.S. Wall

The three-dimensional structure and function of biological supramolecular complexes are, in general, determined and stabilized by conformation and interactions of their macromolecular components. In the case of ribosomes, it has been suggested that one of the functions of ribosomal RNAs is to act as a scaffold maintaining the shape of the ribosomal subunits. In order to investigate this question, we have conducted a comparative TEM and STEM study of the structure of the small 30S subunit of E. coli and its 16S RNA.The conventional electron microscopic imaging of nucleic acids is performed by spreading them in the presence of protein or detergent; the particles are contrasted by electron dense solution (uranyl acetate) or by shadowing with metal (tungsten). By using the STEM on freeze-dried specimens we have avoided the shearing forces of the spreading, and minimized both the collapse of rRNA due to air drying and the loss of resolution due to staining or shadowing. Figure 1, is a conventional (TEM) electron micrograph of 30S E. coli subunits contrasted with uranyl acetate.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

Correlations between structure and function of biological macromolecules have been studied intensively for many years, mostly by indirect methods. High resolution electron microscopy is a unique tool which can provide such information directly by comparing the conformation of biopolymers in their biologically active and inactive state. We have correlated the structure and function of ribosomes, ribonucleoprotein particles which are the site of protein biosynthesis. 70S E. coli ribosomes, used in this experiment, are composed of two subunits - large (50S) and small (30S). The large subunit consists of 34 proteins and two different ribonucleic acid molecules. The small subunit contains 21 proteins and one RNA molecule. All proteins (with the exception of L7 and L12) are present in one copy per ribosome.This study deals with the changes in the fine structure of E. coli ribosomes depleted of proteins L7 and L12. These proteins are unique in many aspects.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0171355 ◽  
Author(s):  
Roshni Bhattacharya ◽  
Peter W. Rose ◽  
Stephen K. Burley ◽  
Andreas Prlić

2001 ◽  
Vol 43 (6) ◽  
pp. 135-135 ◽  
Author(s):  
J.-U. Kreft ◽  
J. W. Wimpenny

We have simulated a nitrifying biofilm with one ammonia and one nitrite oxidising species in order to elucidate the effect of various extracellular polymeric substance (EPS) production scenarios on biofilm structure and function. The individual-based model (IbM) BacSim simulates diffusion of all substrates on a two-dimensional lattice. Each bacterium is individually simulated as a sphere of given size in a continuous, three-dimensional space. EPS production kinetics was described by a growth rate dependent and an independent term (Luedeking-Piret equation). The structure of the biofilm was dramatically influenced by EPS production or capsule formation. EPS production decreased growth of producers and stimulated growth of non-producers because of the energy cost involved. For the same reason, EPS accumulation can fall as its rate of production increases. The patchiness and roughness of the biofilm decreased and the porosity increased due to EPS production. EPS density was maximal in the middle of the vertical profile. Introduction of binding forces between like cells increased clustering.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
A.E. Naas ◽  
A.K. MacKenzie ◽  
B. Dalhus ◽  
V.G.H. Eijsink ◽  
P.B. Pope

Abstract Previous gene-centric analysis of a cow rumen metagenome revealed the first potentially cellulolytic polysaccharide utilization locus, of which the main catalytic enzyme (AC2aCel5A) was identified as a glycoside hydrolase (GH) family 5 endo-cellulase. Here we present the 1.8 Å three-dimensional structure of AC2aCel5A and characterization of its enzymatic activities. The enzyme possesses the archetypical (β/α)8-barrel found throughout the GH5 family and contains the two strictly conserved catalytic glutamates located at the C-terminal ends of β-strands 4 and 7. The enzyme is active on insoluble cellulose and acts exclusively on linear β-(1,4)-linked glucans. Co-crystallization of a catalytically inactive mutant with substrate yielded a 2.4 Å structure showing cellotriose bound in the −3 to −1 subsites. Additional electron density was observed between Trp178 and Trp254, two residues that form a hydrophobic “clamp”, potentially interacting with sugars at the +1 and +2 subsites. The enzyme’s active-site cleft was narrower compared to the closest structural relatives, which in contrast to AC2aCel5A, are also active on xylans, mannans and/or xyloglucans. Interestingly, the structure and function of this enzyme seem adapted to less-substituted substrates such as cellulose, presumably due to the insufficient space to accommodate the side-chains of branched glucans in the active-site cleft.


Author(s):  
Madeleine Keehner ◽  
Peter Khooshabeh ◽  
Mary Hegarty

This chapter examines human factors associated with using interactive three-dimensional (3D) visualizations. Virtual representations of anatomical structure and function, often with sophisticated user control capabilities, are growing in popularity in medicine for education, training, and simulation. This chapter reviews the cognitive science literature and introduces issues such as theoretical ideas related to using interactive visualizations, different types and levels of interactivity, effects of different kinds of control interfaces, and potential cognitive benefits of these tools. The authors raise the question of whether all individuals are equally capable of using 3D visualizations effectively, focusing particularly on two variables: (1) individual differences in spatial abilities, and (2) individual differences in interactive behavior. The chapter draws together findings from the authors’ own studies and from the wider literature, exploring recent insights into how individual differences among users can impact the effectiveness of different types of external visualizations for different kinds of tasks. The chapter offers recommendations for design, such as providing transparent affordances to support users’ meta-cognitive understanding, and employing personalization to complement the capabilities of different individuals. Finally, the authors suggest future directions and approaches for research, including the use of methodology such as needs analysis and contextual enquiry to better understand the cognitive processes and capacities of different kinds of users.


Amino Acids ◽  
2019 ◽  
Vol 51 (10-12) ◽  
pp. 1409-1431 ◽  
Author(s):  
Luigi Grassi ◽  
Chiara Cabrele

Abstract Peptides and proteins are preponderantly emerging in the drug market, as shown by the increasing number of biopharmaceutics already approved or under development. Biomolecules like recombinant monoclonal antibodies have high therapeutic efficacy and offer a valuable alternative to small-molecule drugs. However, due to their complex three-dimensional structure and the presence of many functional groups, the occurrence of spontaneous conformational and chemical changes is much higher for peptides and proteins than for small molecules. The characterization of biotherapeutics with modern and sophisticated analytical methods has revealed the presence of contaminants that mainly arise from oxidation- and elimination-prone amino-acid side chains. This review focuses on protein chemical modifications that may take place during storage due to (1) oxidation (methionine, cysteine, histidine, tyrosine, tryptophan, and phenylalanine), (2) intra- and inter-residue cyclization (aspartic and glutamic acid, asparagine, glutamine, N-terminal dipeptidyl motifs), and (3) β-elimination (serine, threonine, cysteine, cystine) reactions. It also includes some examples of the impact of such modifications on protein structure and function.


Sign in / Sign up

Export Citation Format

Share Document