structure and function relationship
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nagakumar Bharatham ◽  
Purnendu Bhowmik ◽  
Maho Aoki ◽  
Ui Okada ◽  
Sreevalli Sharma ◽  
...  

AbstractOqxB is an RND (Resistance-Nodulation-Division) efflux pump that has emerged as a factor contributing to the antibiotic resistance in Klebsiella pneumoniae. OqxB underwent horizontal gene transfer and is now seen in other Gram-negative bacterial pathogens including Escherichia coli, Enterobacter cloacae and Salmonella spp., further disseminating multi-drug resistance. In this study, we describe crystal structure of OqxB with n-dodecyl-β-D-maltoside (DDM) molecules bound in its substrate-binding pocket, at 1.85 Å resolution. We utilize this structure in computational studies to predict the key amino acids contributing to the efflux of fluoroquinolones by OqxB, distinct from analogous residues in related transporters AcrB and MexB. Finally, our complementation assays with mutated OqxB and minimum inhibitory concentration (MIC) experiments with clinical isolates of E. coli provide further evidence that the predicted structural features are indeed involved in ciprofloxacin efflux.


2020 ◽  
Author(s):  
Marijonas Tutkus ◽  
Jevgenij Chmeliov ◽  
Gediminas Trinkunas ◽  
Parveen Akhtar ◽  
Petar H. Lambrev ◽  
...  

AbstractIncorporation of membrane proteins into reconstituted lipid membranes is a common approach for studying their structure and function relationship in a native-like environment. In this work, we investigated fluorescence properties of liposome-reconstituted LHCII. By utilizing liposome labelling with the fluorescent dye molecules and single-molecule microscopy techniques, we were able to study truly liposome-reconstituted LHCII and compare them with bulk measurements and liposome-free LHCII aggregates on bound surface. Our results showed that fluorescence lifetime in bulk and of that for single liposome measurements were correlated. The fluorescence lifetimes of LHCII were shorter for liposome-free LHCII than for reconstituted LHCII. In the case of liposome-reconstituted LHCII, fluorescence lifetime showed dependence on the protein density reminiscent to concentration quenching. The dependence of fluorescence lifetime of LHCII on the liposome size was not significant. Our results demonstrated that fluorescence quenching can be induced by LHCII-LHCII interactions in reconstituted membranes, most likely occurring via the same mechanism as photoprotective non-photochemical quenching in vivo.


2020 ◽  
Vol 129 (5) ◽  
pp. 1024-1032
Author(s):  
Hannah J. Thomas ◽  
Usaid Rana ◽  
Channa E. Marsh ◽  
Harrison T. Caddy ◽  
Lachlan J. Kelsey ◽  
...  

There is acknowledged variability in the Circle of Willis in the general population, yet the structure and function relationship of the cerebrovasculature is poorly understood. Using a combination of magnetic resonance imaging, high-resolution Doppler ultrasound, and computational fluid dynamic modeling, we show that monozygotic twins exhibit differences in cerebrovascular structure and function when exposed to physiological stimuli. These data suggest that the morphology, function, and health of cerebrovascular arteries are not primarily genetically determined.


2019 ◽  
Vol 26 (8) ◽  
pp. R479-R497 ◽  
Author(s):  
Alba Jiménez-Panizo ◽  
Paloma Pérez ◽  
Ana M Rojas ◽  
Pablo Fuentes-Prior ◽  
Eva Estébanez-Perpiñá

Nuclear receptors are transcription factors that play critical roles in development, homeostasis and metabolism in all multicellular organisms. An important family of nuclear receptors comprises those members that respond to steroid hormones, and which is subdivided in turn into estrogen receptor (ER) isoforms α and β (NR3A1 and A2, respectively), and a second subfamily of so-called oxosteroid receptors. The latter includes the androgen receptor (AR/NR3C4), the glucocorticoid receptor (GR/NR3C1), the mineralocorticoid receptor (MR/NR3C2) and the progesterone receptor (PR/NR3C3). Here we review recent advances in our understanding of the structure-and-function relationship of steroid nuclear receptors and discuss their implications for the etiology of human diseases. We focus in particular on the role played by AR dysregulation in both prostate cancer (PCa) and androgen insensitivity syndromes (AIS), but also discuss conditions linked to mutations of the GR gene as well as those in a non-steroidal receptor, the thyroid hormone receptor (TR). Finally, we explore how these recent results might be exploited for the development of novel and selective therapeutic strategies.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2743 ◽  
Author(s):  
Ying-Wu Lin

Metalloproteins and metalloenzymes play important roles in biological systems by using the limited metal ions, complexes, and clusters that are associated with the protein matrix. The design of artificial metalloproteins and metalloenzymes not only reveals the structure and function relationship of natural proteins, but also enables the synthesis of artificial proteins and enzymes with improved properties and functions. Acknowledging the progress in rational design from single to multiple active sites, this review focuses on recent achievements in the design of artificial metalloproteins and metalloenzymes with metal clusters, including zinc clusters, cadmium clusters, iron–sulfur clusters, and copper–sulfur clusters, as well as noble metal clusters and others. These metal clusters were designed in both native and de novo protein scaffolds for structural roles, electron transfer, or catalysis. Some synthetic metal clusters as functional models of native enzymes are also discussed. These achievements provide valuable insights for deep understanding of the natural proteins and enzymes, and practical clues for the further design of artificial enzymes with functions comparable or even beyond those of natural counterparts.


Sign in / Sign up

Export Citation Format

Share Document