scholarly journals Recombinant Guinea Pig Tumor Necrosis Factor Alpha Stimulates the Expression of Interleukin-12 and the Inhibition of Mycobacterium tuberculosis Growth in Macrophages

2005 ◽  
Vol 73 (3) ◽  
pp. 1367-1376 ◽  
Author(s):  
Hyosun Cho ◽  
Todd M. Lasco ◽  
Shannon Sedberry Allen ◽  
Teizo Yoshimura ◽  
David N. McMurray

ABSTRACT Tumor necrosis factor alpha (TNF-α) plays an important role in the host immune response to infection with the intracellular pathogen Mycobacterium tuberculosis. It is essential for the formation of protective tuberculous granulomas and regulates the expression of other cytokines which contribute to a protective immune response. Interleukin-12 (IL-12) is known to promote a Th1 response, which is essential for antimycobacterial resistance. Recombinant guinea pig TNF-α (rgpTNF-α) protein (17 kDa) was purified, and its bioactivity was confirmed by its cytotoxicity for L929 fibroblasts. High titers of polyclonal anti-gpTNF-α antibody were obtained by immunization of rabbits. Resident alveolar and peritoneal macrophages were isolated from guinea pigs and infected with either the H37Ra or H37Rv strain of M. tuberculosis. The mRNA levels for TNF-α and IL-12 p40 were measured using real-time PCR. IL-12 p40 mRNA was up-regulated in a dose-dependent manner by rgpTNF-α alone. In infected macrophages, a lower dose of rgpTNF-α intensified the mRNA levels of TNF-α and IL-12 p40. However, higher doses of rgpTNF-α suppressed TNF-α and IL-12 p40 mRNA. The antimycobacterial activity of macrophages was assessed by metabolic labeling of M. tuberculosis with [3H]uracil. Resident alveolar and peritoneal macrophages treated with anti-gpTNF-α antibody to block endogenous TNF-α exhibited increased intracellular mycobacterial growth. These data suggest that the dose of TNF-α is crucial to the stimulation of optimal expression of protective cytokines and that TNF-α contributes to the control of mycobacterial replication to promote host resistance against M. tuberculosis.

2001 ◽  
Vol 69 (4) ◽  
pp. 2162-2171 ◽  
Author(s):  
Lisl K. M. Shoda ◽  
Kimberly A. Kegerreis ◽  
Carlos E. Suarez ◽  
Isabel Roditi ◽  
Ricardo S. Corral ◽  
...  

ABSTRACT The activation of innate immune responses by genomic DNA from bacteria and several nonvertebrate organisms represents a novel mechanism of pathogen recognition. We recently demonstrated the CpG-dependent mitogenic activity of DNA from the protozoan parasiteBabesia bovis for bovine B lymphocytes (W. C. Brown, D. M. Estes, S. E. Chantler, K. A. Kegerreis, and C. E. Suarez, Infect. Immun. 66:5423–5432, 1998). However, activation of macrophages by DNA from protozoan parasites has not been demonstrated. The present study was therefore conducted to determine whether DNA from the protozan parasites B. bovis, Trypanosoma cruzi, and T. brucei activates macrophages to secrete inflammatory mediators associated with protective immunity. DNA fromEscherichia coli and all three parasites stimulated B-lymphocyte proliferation and increased macrophage production of interleukin-12 (IL-12), tumor necrosis factor alpha (TNF-α), and nitric oxide (NO). Regulation of IL-12 and NO production occurred at the level of transcription. The amounts of IL-12, TNF-α, and NO induced by E. coli and protozoal DNA were strongly correlated (r 2 > 0.9) with the frequency of CG dinucleotides in the genome, and immunostimulation by DNA occurred in the order E. coli ≥ T. cruzi > T. brucei > B. bovis. Induction of inflammatory mediators by E. coli, T. brucei, and B. bovis DNA was dependent on the presence of unmethylated CpG dinucleotides. However, at high concentrations,E. coli and T. cruzi DNA-mediated macrophage activation was not inhibited following methylation. The recognition of protozoal DNA by B lymphocytes and macrophages may provide an important innate defense mechanism to control parasite replication and promote persistent infection.


Author(s):  
NELLY MARISSA ◽  
NUR RAMADHAN ◽  
SARI HANUM ◽  
MARLINDA ◽  
EKA FITRIA ◽  
...  

Objective: This study aimed to determine the decreased immune response of tuberculosis (TB) with diabetes mellitus (DM) patients. Methods: A total of 105 TB patients who were undergoing treatment at health centers and hospitals in Banda Aceh and Aceh Besar were included in this study. Data collection was carried out by interviewed to obtained demographic and respondent categories based on the diagnosis. Measurements of height and weight were also conducted to obtain body mass index data. 5 mL peripheral blood was taken from each respondent group into a TB with DM (TB+DM) and TB without DM (TB-DM). The blood tested usage tumor necrosis factor-alpha (TNF-α) level using enzyme-linked immunosorbent assay and interferon-gamma (IFN-γ) using IFN-γ release assay. Results: The average concentration of both TNF-α and IFN-γ was higher in TB-DM group (TNF-a 5.2 pg/mL; IFN-g 1.5 IU/mL) than in TB+DM group (TNF-a 2.06 pg/mL; IFN-g 2.86 IU/mL). There were significant differences in TNF-α between the two groups but no significant differences in IFN-γ protein concentration. Conclusion: The immune response of TB patients with DM symptoms was markedly reduced by the decreased expression of TNF-α and IFN-γ.


2005 ◽  
Vol 73 (12) ◽  
pp. 8437-8441 ◽  
Author(s):  
Hyosun Cho ◽  
David N. McMurray

ABSTRACT Neutralization of tumor necrosis factor alpha (TNF-α) significantly down-regulated antigen-induced lymphoproliferation and the expression of interleukin-12 p40 and gamma interferon mRNA and enhanced the viability of intracellular attenuated and virulent mycobacteria in cocultures of immune T cells and macrophages obtained from Mycobacterium bovis BCG-vaccinated guinea pigs. This suggests the crucial role of TNF-α in the activation of a type 1 T-cell response against Mycobacterium tuberculosis infection.


1999 ◽  
Vol 67 (11) ◽  
pp. 5762-5767 ◽  
Author(s):  
Angelo Corti ◽  
Lanfranco Fattorini ◽  
Ove Fredrik Thoresen ◽  
Maria Luisa Ricci ◽  
Anna Gallizia ◽  
...  

ABSTRACT The bacterial growth and the production of tumor necrosis factor alpha (TNF-α) and TNF receptors (TNF-Rs) in the spleen and blood of BALB/c mice challenged with Mycobacterium avium complex (MAC) were monitored. Infection developed in two phases: the first, up to day 21, was associated with rapid MAC multiplication in the spleen and a drop in the mycobacteremia, and the second was associated with control of the infection in both compartments. In the spleen, TNF-α and TNF-RII mRNA levels peaked on day 21 and then slowly decreased; however, no increase in the level of TNF-RI mRNA was observed throughout these experiments. The level of circulating soluble TNF-RII (sTNF-RII) was transiently increased after day 21. In a model in which overproduction of bioactive TNF-α was triggered in response to a second infection with MAC, an increased production of sTNF-RII by cultured splenocytes was also observed. Administration of an antagonist anti-TNF-RII monoclonal antibody (MAb 6G1) to infected mice inhibited the bacterial growth in the spleen, suggesting that the TNF-RII and/or sTNF-RII was functionally involved in the mechanisms that control the infection. Overall, these observations suggest that upregulation of TNF-RII or sTNF-RII contributes to modulation of the TNF-α antibacterial activity in MAC infections.


2002 ◽  
Vol 70 (6) ◽  
pp. 2959-2964 ◽  
Author(s):  
Amy C. Herring ◽  
John Lee ◽  
Roderick A. McDonald ◽  
Galen B. Toews ◽  
Gary B. Huffnagle

ABSTRACT The development of T1-cell-mediated immunity is required to clear a pulmonary Cryptococcus neoformans infection. The objective of these studies was to determine the mechanism by which tumor necrosis factor alpha (TNF-α) augments the development of pulmonary T1 immunity to C. neoformans infection. TNF-α expression was detected in lavage sample cells at days 2, 3, and 7 following C. neoformans infection. The numbers of CFU in the lung were not different between control and anti-TNF-α-treated mice at any time point examined during the afferent phase of the response (days 0 to 7). However, neutralization of TNF-α prevented the initiation of pulmonary clearance during the efferent phase of the response (day 14). Administration of anti-TNF-α monoclonal antibody (day 0) diminished the lung levels of TNF-α, interleukin-12 (IL-12), and gamma interferon (IFN-γ) induced by C. neoformans at day 7 postinfection. Neutralization of TNF-α (day 0) also altered the IFN-γ/IL-4 ratio in the lung-associated lymph nodes at day 7 following C. neoformans infection. Anti-TNF-α-treated mice developed a pulmonary eosinophilia at day 14 postinfection. Consistent with the pulmonary eosinophilia, anti-TNF-α-treated mice exhibited elevated serum immunoglobulin E and inhibition of the anticryptococcal delayed-type hypersensitivity response, indicating a shift toward a T2 response. Neutralization of IL-12 also prevented lung leukocyte production of IFN-γ in response to the infection. These findings demonstrate that afferent-phase TNF-α production is essential for the induction of IL-12 and IFN-γ and neutralization of early TNF-α results in a T2 shift of the T1/T2 balance of antifungal immunity.


2001 ◽  
Vol 69 (11) ◽  
pp. 6580-6587 ◽  
Author(s):  
Jan Warwick-Davies ◽  
Amanda J. Watson ◽  
George E. Griffin ◽  
Sanjeev Krishna ◽  
Robin J. Shattock

ABSTRACT Mycobacterium tuberculosis alone induces small, donor-variable amounts of tumor necrosis factor alpha (TNF-α) from primary human monocytes in vitro. However, TNF-α release is increased 5- to 500-fold when fixed activated T cells (FAT) or their isolated, unfixed membranes are added to this system. This FAT-induced synergy was at least as potent as that induced by gamma interferon (IFN-γ) at 100 U/ml. FAT-enhanced TNF-α production is at least in part transcriptionally mediated, as reflected by quantitative changes in TNF-α mRNA between 2 and 6 h poststimulation. Unlike IFN-γ-cocultured cells, FAT-treated monocytes appeared not to have enhanced TNF-α message stability, suggesting that de novo transcription may be involved in this effect. Furthermore, M. tuberculosis alone induced only minimal DNA binding of monocyte NF-κB, but cells treated with M. tuberculosis and FAT potentiated NF-κB activity more effectively. It is therefore possible that one mechanism by which FAT synergize with M. tuberculosis to stimulate TNF-α production is via NF-κB-enhanced transcription. These data strongly suggest that in the interaction of cells involved in the immune response to M. tuberculosis, T-cell stimulation of monocyte TNF-α production involves a surface membrane interaction(s) as well as soluble mediators.


2017 ◽  
Vol 85 (3) ◽  
Author(s):  
Alvaro Torres-Huerta ◽  
Tomás Villaseñor ◽  
Angel Flores-Alcantar ◽  
Cristina Parada ◽  
Estefanía Alemán-Navarro ◽  
...  

ABSTRACT Mycobacterium tuberculosis is the causal agent of tuberculosis. Tumor necrosis factor alpha (TNF-α), transforming growth factor β (TGF-β), and gamma interferon (IFN-γ) secreted by activated macrophages and lymphocytes are considered essential to contain Mycobacterium tuberculosis infection. The CD43 sialomucin has been reported to act as a receptor for bacilli through its interaction with the chaperonin Cpn60.2, facilitating mycobacterium-macrophage contact. We report here that Cpn60.2 induces both human THP-1 cells and mouse-derived bone marrow-derived macrophages (BMMs) to produce TNF-α and that this production is CD43 dependent. In addition, we present evidence that the signaling pathway leading to TNF-α production upon interaction with Cpn60.2 requires active Src family kinases, phospholipase C-γ (PLC-γ), phosphatidylinositol 3-kinase (PI3K), p38, and Jun N-terminal protein kinase (JNK), both in BMMs and in THP-1 cells. Our data highlight the role of CD43 and Cpn60.2 in TNF-α production and underscore an important role for CD43 in the host-mycobacterium interaction.


2012 ◽  
Vol 80 (11) ◽  
pp. 3858-3868 ◽  
Author(s):  
Jillian M. Richmond ◽  
Elizabeth R. Duffy ◽  
Jinhee Lee ◽  
Kavon Kaboli ◽  
Daniel G. Remick ◽  
...  

ABSTRACTPrimaryMycobacterium tuberculosisinfection results in granuloma formation in lung tissue. A granuloma encapsulates mycobacterium-containing cells, thereby preventing dissemination and further infection. Tumor necrosis factor alpha (TNF-α) is a host-protective cytokine duringM. tuberculosisinfection due to its role in promoting and sustaining granuloma formation. TNF activity is regulated through the production of soluble TNF receptors (sTNFRI and sTNFRII). Therefore, we examined the potential production of endogenous sTNFRs duringM. tuberculosisinfection. Using the murine model of aerosolM. tuberculosisinfection, we determined that levels of sTNFR production were elevated in bronchoalveolar lavage fluid 1 month following infection. An investigation ofM. tuberculosiscell wall components identified that the known virulence factor mannose-capped lipoarabinomannan (ManLAM) was sufficient to induce sTNFR production, with sTNFRII being produced preferentially compared with sTNFRI. ManLAM stimulated the release of sTNFRs without TNF production, which corresponded to an increase in TNF-α-converting enzyme (TACE) activity. To determine the relevance of these findings, serum samples fromM. tuberculosis-infected patients were tested and found to have an increase in the sTNFRII/sTNFRI ratio. These data identify a mechanism by whichM. tuberculosisinfection can promote the neutralization of TNF and furthermore suggest the potential use of the sTNFRII/sTNFRI ratio as an indicator of tuberculosis disease.


2002 ◽  
Vol 70 (4) ◽  
pp. 2082-2089 ◽  
Author(s):  
Sherilyn Smith ◽  
Denny Liggitt ◽  
Elizabeth Jeromsky ◽  
Xiaoxia Tan ◽  
Shawn J. Skerrett ◽  
...  

ABSTRACT The local intrapulmonary role of tumor necrosis factor alpha (TNF-α) in a protective host response during acute and chronic infection with Mycobacterium tuberculosis is incompletely understood. To directly assess its role in the intrapulmonary immune response, we compared the responses of transgenic mice with a local pulmonary blockade of TNF-α (SPCTNFRIIFc mice) to mice with globally inhibited TNF-α (TNFRKO mice) and mice with normal immune systems (control mice). Consistent with previous reports, 100% of TNFRKO mice died by 28 days after aerosol infection, and these mice had markedly increased numbers of bacteria and widespread tissue necrosis in their lungs compared to controls. The median survival time of the SPCTNFRIIFc mice was 142 days, and 75% died by 180 days. Even though the numbers of bacteria in the lungs of the SPCTNFRIIFc mice were marginally increased compared to controls, these mice had a persistent neutrophilic inflammatory response and increased expression of proinflammatory cytokines (interleukin-1α/β [IL-1α/β], IL-18, gamma interferon, IL-6, and macrophage migration inhibitory factor) and chemokines (eotaxin, macrophage inflammatory protein 1α/β, gamma interferon-inducible protein 10, macrophage chemotaxic protein 1, and TCA-3) in their lungs. These studies with the SPCTNFRIIFc mice provide direct evidence for the local importance of TNF-α in the proper regulation of host defense to M. tuberculosis. The studies also suggest that when the local actions of TNF-α are selectively impaired in the lungs, tissue destruction and death ensue, at least in part, due to persistent expression of proinflammatory mediators that would normally be downregulated.


2002 ◽  
Vol 70 (6) ◽  
pp. 3149-3155 ◽  
Author(s):  
Ulrike Thalmaier ◽  
Norbert Lehn ◽  
Klaus Pfeffer ◽  
Manfred Stolte ◽  
Michael Vieth ◽  
...  

ABSTRACT Increased gastric production of interleukin 8 and tumor necrosis factor alpha (TNF-α) has been implicated in the pathogenesis of Helicobacter pylori-associated gastroduodenal disease. In the present study we used a mouse model to demonstrate whether loss of the tumor necrosis factor receptor 1 (TNF-R1) function leads to differences in gastric inflammation or the systemic immune response in H. pylori infection. Six different clinical isolates of H. pylori (three cytotoxin-positive and three cytotoxin-negative strains) were adapted to C57BL/6 mice. TNF-R1-deficient (TNF-R1−/−) mice (n = 19) and isogenetic controls (n = 24) were infected and sacrificed after 4 weeks of infection. Inflammation of the stomach and the humoral immune response to H. pylori were evaluated by histological, immunohistochemical, and serological methods. There was no detectable difference in the grade or activity of gastritis in TNF-R1−/− mice when they were compared with wild-type mice, but the number of lymphoid aggregates was slightly reduced in the gastric mucosa of TNF-R1−/− mice. Interestingly, total immunoglobulin G (IgG), as well as IgG1, IgG2b, and IgG3, H. pylori-specific antibody titers were significantly higher in wild-type mice. As revealed by immunoblot analysis, the difference in reactivity against H. pylori antigens was not based on a failure to recognize single H. pylori antigens in TNF-R1−/− mice. We therefore suggest that TNF-R1-mediated TNF-α signals might support a systemic humoral immune response against H. pylori and that the gastric inflammatory response to H. pylori infection seems to be independent of TNF-R1-mediated signals.


Sign in / Sign up

Export Citation Format

Share Document