scholarly journals Strain-Specific Effects of Probiotics on Gut Barrier Integrity following Hemorrhagic Shock

2005 ◽  
Vol 73 (6) ◽  
pp. 3686-3692 ◽  
Author(s):  
Misha D. Luyer ◽  
Wim A. Buurman ◽  
M'hamed Hadfoune ◽  
Gea Speelmans ◽  
Jan Knol ◽  
...  

ABSTRACT Probiotic therapy modulates the composition of the intestinal flora and inhibits the inflammatory response. These properties may be of benefit in the preservation of gut barrier integrity after injury or stress. In this study, we examined the effect of two Lactobacillus strains selected for their pathogen exclusion properties on intestinal barrier integrity following hemorrhagic shock. Additionally, the responsiveness of the macrophage cell line RAW 264.7 to combined exposure to Lactobacillus DNA or oligodeoxynucleotides containing CpG motifs (CpG-ODN) and endotoxin was assessed by measuring tumor necrosis factor alpha (TNF-α) release. Rats were administered lactobacilli (5 × 109 CFU) or vehicle for 7 days and were subjected subsequently to hemorrhagic shock by withdrawal of 2.1 ml blood/100 g tissue. Levels of plasma endotoxin, bacterial translocation to distant organs, and filamentous actin (F-actin) in the ileum were determined 24 h later. Rats treated with Lactobacillus rhamnosus showed reduced levels of plasma endotoxin (8 ± 2 pg/ml versus 24 ± 4 pg/ml; P = 0.01), bacterial translocation (2 CFU/gram versus 369 CFU/gram; P < 0.01), and disruption of F-actin distribution following hemorrhagic shock compared with nontreated control rats. In contrast, pretreatment with Lactobacillus fermentum had no substantial effect on gut barrier integrity. Interestingly, DNA preparations from both lactobacilli reduced endotoxin-induced TNF-α release dose dependently, whereas CpG-ODN increased TNF-α release. In conclusion, the pathogen exclusion properties of both Lactobacillus strains and the reduction of endotoxin-induced inflammation by their DNA in vitro are not prerequisites for a beneficial effect of probiotic therapy on gut barrier function following hemorrhagic shock. Although pretreatment with Lactobacillus spp. may be useful to preserve gut barrier integrity following severe hypotension, a thorough assessment of specific strains seems to be essential.

2021 ◽  
Vol 22 (2) ◽  
pp. 744
Author(s):  
David Diaz ◽  
Elisa Lopez-Dolado ◽  
Sergio Haro ◽  
Jorge Monserrat ◽  
Carlos Martinez-Alonso ◽  
...  

Our aim was to investigate the subset distribution and function of circulating monocytes, proinflammatory cytokine levels, gut barrier damage, and bacterial translocation in chronic spinal cord injury (SCI) patients. Thus, 56 SCI patients and 28 healthy donors were studied. The levels of circulating CD14+highCD16−, CD14+highCD16+, and CD14+lowCD16+ monocytes, membrane TLR2, TLR4, and TLR9, phagocytic activity, ROS generation, and intracytoplasmic TNF-α, IL-1, IL-6, and IL-10 after lipopolysaccharide (LPS) stimulation were analyzed by polychromatic flow cytometry. Serum TNF-α, IL-1, IL-6 and IL-10 levels were measured by Luminex and LPS-binding protein (LBP), intestinal fatty acid-binding protein (I-FABP) and zonulin by ELISA. SCI patients had normal monocyte counts and subset distribution. CD14+highCD16− and CD14+highCD16+ monocytes exhibited decreased TLR4, normal TLR2 and increased TLR9 expression. CD14+highCD16− monocytes had increased LPS-induced TNF-α but normal IL-1, IL-6, and IL-10 production. Monocytes exhibited defective phagocytosis but normal ROS production. Patients had enhanced serum TNF-α and IL-6 levels, normal IL-1 and IL-10 levels, and increased circulating LBP, I-FABP, and zonulin levels. Chronic SCI patients displayed impaired circulating monocyte function. These patients exhibited a systemic proinflammatory state characterized by enhanced serum TNF-α and IL-6 levels. These patients also had increased bacterial translocation and gut barrier damage.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Fang Liu ◽  
Seul A. Lee ◽  
Stephen M. Riordan ◽  
Li Zhang ◽  
Lixin Zhu

Anti-cytokine antibodies are used in treating chronic inflammatory diseases and autoimmune diseases such as inflammatory bowel disease and rheumatic diseases. Patients with these diseases often have a compromised gut barrier function, suggesting that anti-cytokine antibodies may contribute to the re-establishment of gut barrier integrity, in addition to their immunomodulatory effects. This paper reviews the effects of anti-cytokine antibodies on gut barrier function and their mechanisms.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 425-425
Author(s):  
Sunhye Lee ◽  
Michael Goodson ◽  
Wendie Vang ◽  
Karen Kalanetra ◽  
Daniela Barile ◽  
...  

Abstract Objectives 2’-fucosyllactose (2’-FL), the most predominant oligosaccharide found in human milk, acts as a prebiotic with beneficial effects on the host. The aim of this study was to determine the beneficial effect of 2’-FL on intestinal barrier integrity and metabolic functions in low-fat (LF)- and high-fat (HF)-fed mice. Methods Male C57/BL6 mice (n = 32, 8/group; 6 weeks old, JAX, CA) were counter-balanced into four weight-matched groups and fed either a low-fat (LF; 10% kcal fat with 7% kcal sucrose) or HF (45% kcal fat with 17% kcal sucrose) with or without supplementation of 2’-FL in the diet [10% (w/w), 8 weeks; LF/2’-FL or HF/2’-FL; BASF, Germany]. General phenotypes (body weight, energy intake, fat and lean mass), intestinal permeability (ex vivo in Ussing chambers), lipid profiles, and microbial metabolites were assessed. Results 2’-FL significantly attenuated the HF-induced increase in body fat mass with a trend to decrease body weight gain. 2’-FL significantly decreased intestinal permeability in LF-fed mice with a trend for a decrease in HF-fed mice. This was associated with a significant increase in interleukin-22, a cytokine known to have a protective role in intestinal barrier function. Visceral adipocyte size was significantly decreased by 2’-FL in both LF- and HF-fed mice. 2’-FL suppressed HF-induced upregulation of adipogenic transcription factors peroxisome proliferator-activated receptor gamma and sterol regulatory element binding protein-1c in the liver. Lastly, 2’-FL supplementation led to a significant elevation of lactic acid concentration in the cecum of HF-fed mice, which is known to be a product from beneficial microbes. Conclusions 2’-FL supplementation improved gut barrier integrity and lipid metabolism in mice with and without the metabolic challenge of HF feeding. These findings support the use of 2’-FL in the control of gut barrier function and metabolic homeostasis under normal and abnormal physiological conditions. Funding Sources BASF (Germany).


2003 ◽  
Vol 22 ◽  
pp. S38
Author(s):  
M.D.P. Luyer ◽  
M. Hadfoune ◽  
J.A. Jacobs ◽  
C.H.C. Dejong ◽  
W.A. Buurman ◽  
...  

2011 ◽  
Vol 71 ◽  
pp. S456-S461 ◽  
Author(s):  
Capt(N) Raymond L. C. Kao ◽  
Anargyros Xenocostas ◽  
David K. Driman ◽  
Tao Rui ◽  
Weixiong Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document