scholarly journals 2’-fucosyllactose (2’-FL) Supplementation Improves Gut Barrier Function and Lipid Metabolism in HF-fed Mice

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 425-425
Author(s):  
Sunhye Lee ◽  
Michael Goodson ◽  
Wendie Vang ◽  
Karen Kalanetra ◽  
Daniela Barile ◽  
...  

Abstract Objectives 2’-fucosyllactose (2’-FL), the most predominant oligosaccharide found in human milk, acts as a prebiotic with beneficial effects on the host. The aim of this study was to determine the beneficial effect of 2’-FL on intestinal barrier integrity and metabolic functions in low-fat (LF)- and high-fat (HF)-fed mice. Methods Male C57/BL6 mice (n = 32, 8/group; 6 weeks old, JAX, CA) were counter-balanced into four weight-matched groups and fed either a low-fat (LF; 10% kcal fat with 7% kcal sucrose) or HF (45% kcal fat with 17% kcal sucrose) with or without supplementation of 2’-FL in the diet [10% (w/w), 8 weeks; LF/2’-FL or HF/2’-FL; BASF, Germany]. General phenotypes (body weight, energy intake, fat and lean mass), intestinal permeability (ex vivo in Ussing chambers), lipid profiles, and microbial metabolites were assessed. Results 2’-FL significantly attenuated the HF-induced increase in body fat mass with a trend to decrease body weight gain. 2’-FL significantly decreased intestinal permeability in LF-fed mice with a trend for a decrease in HF-fed mice. This was associated with a significant increase in interleukin-22, a cytokine known to have a protective role in intestinal barrier function. Visceral adipocyte size was significantly decreased by 2’-FL in both LF- and HF-fed mice. 2’-FL suppressed HF-induced upregulation of adipogenic transcription factors peroxisome proliferator-activated receptor gamma and sterol regulatory element binding protein-1c in the liver. Lastly, 2’-FL supplementation led to a significant elevation of lactic acid concentration in the cecum of HF-fed mice, which is known to be a product from beneficial microbes. Conclusions 2’-FL supplementation improved gut barrier integrity and lipid metabolism in mice with and without the metabolic challenge of HF feeding. These findings support the use of 2’-FL in the control of gut barrier function and metabolic homeostasis under normal and abnormal physiological conditions. Funding Sources BASF (Germany).

Gut ◽  
1998 ◽  
Vol 42 (3) ◽  
pp. 396-401 ◽  
Author(s):  
F K S Welsh ◽  
S M Farmery ◽  
K MacLennan ◽  
M B Sheridan ◽  
G R Barclay ◽  
...  

Background—The integrity of the gastrointestinal mucosa is a key element in preventing systemic absorption of enteric toxins and bacteria. In the critically ill, breakdown of gut barrier function may fuel sepsis. Malnourished patients have an increased risk of postoperative sepsis; however, the effects of malnutrition on intestinal barrier function in man are unknown.Aims—To quantify intestinal barrier function, endotoxin exposure, and the acute phase cytokine response in malnourished patients.Patients—Malnourished and well nourished hospitalised patients.Methods—Gastrointestinal permeability was measured in malnourished patients and well nourished controls using the lactulose:mannitol test. Endoscopic biopsy specimens were stained and morphological and immunohistochemical features graded. The polymerase chain reaction was used to determine mucosal cytokine expression. The immunoglobulin G antibody response to endotoxin and serum interleukin 6 were measured by enzyme linked immunosorbent assay.Results—There was a significant increase in intestinal permeability in the malnourished patients in association with phenotypic and molecular evidence of activation of lamina propria mononuclear cells and enterocytes, and a heightened acute phase response.Conclusions—Intestinal barrier function is significantly compromised in malnourished patients, but the clinical significance is unclear.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Hongming Su ◽  
Jianling Mo ◽  
Jingdan Ni ◽  
Huihui Ke ◽  
Tao Bao ◽  
...  

Accumulating evidence indicates that type 2 diabetes (T2D) is associated with intestinal barrier dysfunction and dysbiosis, implying the potential targets for T2D therapeutics. Andrographolide was reported to have several beneficial effects on diabetes and its associated complications. However, the protective role of andrographolide, as well as its underlying mechanism against T2D, remains elusive. Herein, we reported that andrographolide enhanced intestinal barrier integrity in LPS-induced Caco-2 cells as indicated by the improvement of cell monolayer barrier permeability and upregulation of tight junction protein expression. In addition, andrographolide alleviated LPS-induced oxidative stress by preventing ROS and superoxide anion radical overproduction and reversing glutathione depletion. In line with the in vitro results, andrographolide reduced metabolic endotoxemia and strengthened gut barrier integrity in db/db diabetic mice. We also found that andrographolide appeared to ameliorate glucose intolerance and insulin resistance and attenuated diabetes-associated redox disturbance and inflammation. Furthermore, our results indicated that andrographolide modified gut microbiota composition as indicated by elevated Bacteroidetes/Firmicutes ratio, enriched microbial species of Akkermansia muciniphila, and increased SCFAs level. Taken together, this study demonstrated that andrographolide exerted a glucose-lowering effect through strengthening intestinal barrier function and increasing the microbial species of A. muciniphila, which illuminates a plausible approach to prevent T2D by regulating gut barrier integrity and shaping intestinal microbiota composition.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 308 ◽  
Author(s):  
Thao Nguyen ◽  
Olena Prykhodko ◽  
Frida Hållenius ◽  
Margareta Nyman

Butyric acid has been shown to reduce high-fat diet-related metabolic disturbances and to improve intestinal barrier function due to its potent anti-inflammatory capacity. This study investigates whether a butyric acid ester, monobutyrin (MB) affects lipid profiles and gut barrier function in a dose-response manner in rats fed butter- or lard-based high-fat diets. Four-week-old male Wistar rats were fed butter-based diets containing 0, 0.25, 0.75 and 1.5 MB g/100 g (dry weight basis) or 0.5 glycerol g/100 g, and diets with lard (La) containing 0 and 0.5 MB g/100 g or a low-fat control diet for 3–4 weeks. Lipid profiles in blood and liver tissue, intestinal permeability and cecal short-chain fatty acids were examined. The results showed a dose-dependent decrease in liver total cholesterol for 1.5 MB (p < 0.05) and liver triglycerides for 0.75 MB (p < 0.05) and 1.5 MB (p = 0.08) groups compared to the high-fat control group. Furthermore, a lower excretion of mannitol in urine in the 1.5 MB group indicated improved intestinal barrier function. When MB was supplemented in the lard-based diet, serum total cholesterol levels decreased, and total amount of liver high-density lipoprotein-cholesterol increased. Thus, MB dietary supplementation can be effective in counteracting lipid metabolism disturbances and impaired gut barrier function induced by high-fat diets.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 187
Author(s):  
Lokman Pang ◽  
Jennifer Huynh ◽  
Mariah G. Alorro ◽  
Xia Li ◽  
Matthias Ernst ◽  
...  

The intestinal epithelium provides a barrier against commensal and pathogenic microorganisms. Barrier dysfunction promotes chronic inflammation, which can drive the pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer (CRC). Although the Signal Transducer and Activator of Transcription-3 (STAT3) is overexpressed in both intestinal epithelial cells and immune cells in IBD patients, the role of the interleukin (IL)-6 family of cytokines through the shared IL-6ST/gp130 receptor and its associated STAT3 signalling in intestinal barrier integrity is unclear. We therefore investigated the role of STAT3 in retaining epithelial barrier integrity using dextran sulfate sodium (DSS)-induced colitis in two genetically modified mouse models, to either reduce STAT1/3 activation in response to IL-6 family cytokines with a truncated gp130∆STAT allele (GP130∆STAT/+), or by inducing short hairpin-mediated knockdown of Stat3 (shStat3). Here, we show that mice with reduced STAT3 activity are highly susceptible to DSS-induced colitis. Mechanistically, the IL-6/gp130/STAT3 signalling cascade orchestrates intestinal barrier function by modulating cytokine secretion and promoting epithelial integrity to maintain a defence against bacteria. Our study also identifies a crucial role of STAT3 in controlling intestinal permeability through tight junction proteins. Thus, therapeutically targeting the IL-6/gp130/STAT3 signalling axis to promote barrier function may serve as a treatment strategy for IBD patients.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yongliang Zhang ◽  
Shumin Duan ◽  
Ying Liu ◽  
Yun Wang

Abstract Objective Up to 44% of particulates of food-grade titanium dioxide (TiO2) are in nanoscale, while the effect and combined effect of which with other substances on intestinal barrier haven’t been fully understood yet. This study is aimed to study the effect of two kinds of TiO2 nanoparticles (TiO2 NPs and TiO2 MPs) on intestinal barrier functions, to reveal the combined effect of TiO2 NPs and Lipopolysaccharide (LPS) on intestinal barrier. Methods Male ICR mice were randomly divided into 18 groups (3 feed types * 3 exposure length * 2 LPS dosage) and were fed with normal or TiO2-mixed feed (containing 1% (mass fraction, w/w) TiO2 NPs or TiO2 MPs) for 1, 3, 6 months, followed by a single oral administration of 0 or 10 mg/(kg body weight) LPS. Four hours later, the transportation of TiO2, the intestinal barrier functions and the inflammatory response were evaluated. Results Both TiO2 notably increased the intestinal villi height / crypt depth ratios after 1 and 3 months of exposure, and increased the expression of ileal tight junction proteins (ZO-1 and occludin) after 1 month of exposure. After 6 months of exposure, TiO2 NPs led to reduced feed consumption, TiO2 MPs caused spare microvilli in small intestine and elevated Ti content in the blood cells. The intestinal permeability didn’t change in both TiO2 exposed groups. After LPS administration, we observed altered intestinal villi height / crypt depth ratios, lowered intestinal permeability (DAO) and upregulated expression of ileal ZO-1 in both (TiO2 +LPS) exposed groups. There are no significant changes of ileal or serum cytokines except for a higher serum TNF-α level in LPS treated group. The antagonistic effect was found between TiO2 NPs and LPS, but there are complicated interactions between TiO2 MPs and LPS. Conclusion Long-term intake of food additive TiO2 could alter the intestinal epithelial structure without influencing intestinal barrier function. Co-exposure of TiO2 and LPS would enhance intestinal barrier function without causing notable inflammatory responses, and there is antagonistic effect between TiO2 NPs and LPS. All the minor effects observed might associate with the gentle exposure method where TiO2 being ingested with feed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Fernanda Roca Rubio ◽  
Ulrika Eriksson ◽  
Robert J. Brummer ◽  
Julia König

AbstractThe intestinal barrier plays a crucial role in maintaining gut health, and an increased permeability has been linked to several intestinal and extra-intestinal disorders. There is an increasing demand for interventions aimed at strengthening this barrier and for in vivo challenge models to assess their efficiency. This study investigated the effect of sauna-induced dehydration on intestinal barrier function (clinicaltrials.gov: NCT03620825). Twenty healthy subjects underwent three conditions in random order: (1) Sauna dehydration (loss of 3% body weight), (2) non-steroidal anti-inflammatory drug (NSAID) intake, (3) negative control. Intestinal permeability was assessed by a multi-sugar urinary recovery test, while intestinal damage, bacterial translocation and cytokines were assessed by plasma markers. The sauna dehydration protocol resulted in an increase in gastroduodenal and small intestinal permeability. Presumably, this increase occurred without substantial damage to the enterocytes as plasma intestinal fatty acid-binding protein (I-FABP) and liver fatty acid-binding protein (L-FABP) were not affected. In addition, we observed significant increases in levels of lipopolysaccharide-binding protein (LBP), IL-6 and IL-8, while sCD14, IL-10, IFN-ɣ and TNF-α were not affected. These results suggest that sauna dehydration increased intestinal permeability and could be applied as a new physiological in vivo challenge model for intestinal barrier function.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Fang Liu ◽  
Seul A. Lee ◽  
Stephen M. Riordan ◽  
Li Zhang ◽  
Lixin Zhu

Anti-cytokine antibodies are used in treating chronic inflammatory diseases and autoimmune diseases such as inflammatory bowel disease and rheumatic diseases. Patients with these diseases often have a compromised gut barrier function, suggesting that anti-cytokine antibodies may contribute to the re-establishment of gut barrier integrity, in addition to their immunomodulatory effects. This paper reviews the effects of anti-cytokine antibodies on gut barrier function and their mechanisms.


2019 ◽  
Vol 317 (1) ◽  
pp. G17-G39 ◽  
Author(s):  
Michael Camilleri ◽  
Barbara J. Lyle ◽  
Karen L. Madsen ◽  
Justin Sonnenburg ◽  
Kristin Verbeke ◽  
...  

A reduction in intestinal barrier function is currently believed to play an important role in pathogenesis of many diseases, as it facilitates passage of injurious factors such as lipopolysaccharide, peptidoglycan, whole bacteria, and other toxins to traverse the barrier to damage the intestine or enter the portal circulation. Currently available evidence in animal models and in vitro systems has shown that certain dietary interventions can be used to reinforce the intestinal barrier to prevent the development of disease. The relevance of these studies to human health is unknown. Herein, we define the components of the intestinal barrier, review available modalities to assess its structure and function in humans, and review the available evidence in model systems or perturbations in humans that diet can be used to fortify intestinal barrier function. Acknowledging the technical challenges and the present gaps in knowledge, we provide a conceptual framework by which evidence could be developed to support the notion that diet can reinforce human intestinal barrier function to restore normal function and potentially reduce the risk for disease. Such evidence would provide information on the development of healthier diets and serve to provide a framework by which federal agencies such as the US Food and Drug Administration can evaluate evidence linking diet with normal human structure/function claims focused on reducing risk of disease in the general public.


2019 ◽  
Vol 10 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Y. Kurose ◽  
J. Minami ◽  
A. Sen ◽  
N. Iwabuchi ◽  
F. Abe ◽  
...  

Intestinal barrier function is closely related to intestinal health and diseases. Recent studies demonstrate that some probiotic and commensal bacteria secrete metabolites that are capable of affecting the intestinal functions. The present study examined an enhancing effect of bioactive factors secreted by Bifidobacterium breve strain B-3 on the intestinal tight junction (TJ) barrier integrity in human intestinal Caco-2 cells. Administration of conditioned medium obtained from B. breve strain B-3 (B3CM) to Caco-2 cells for 24 h increased trans-epithelial electrical resistance (TER), a TJ barrier indicator, across their monolayers. Immunoblot, immunofluorescence, and qPCR analyses demonstrated that B3CM increased an integral TJ protein, claudin-4 expression. In luciferase reporter assay, the administration of B3CM enhanced the claudin-4 promoter activity, indicating the transcriptional upregulation of claudin-4. Site-directed mutation of specificity protein 1 (Sp1) binding sites in the claudin-4 promoter sequence and suppression of Sp1 expression by siRNA technology clearly reduced the enhancing effect of B3CM on claudin-4 promoter activity. Liquid chromatography/mass spectrometry detected a significant amount of acetic acid in B3CM (28.3 mM). The administration of acetic acid to Caco-2 cells partially mimicked a B3CM-mediated increase in TER, but failed to increase claudin-4 expression. Taken together, bioactive factors secreted by B. breve B-3 enhanced the TJ barrier integrity in intestinal Caco-2 cells. Transcriptional regulation of claudin-4 through Sp1 is at least in part one of the underlying molecular mechanisms. In addition, acetic acid contributes to the B3CM-mediated barrier effect independently of claudin-4 expression.


Sign in / Sign up

Export Citation Format

Share Document