scholarly journals Arrangement of the Translocator of the Autotransporter Adhesin Involved in Diffuse Adherence on the Bacterial Surface

2005 ◽  
Vol 73 (7) ◽  
pp. 3851-3859 ◽  
Author(s):  
Daniel Müller ◽  
Inga Benz ◽  
Damini Tapadar ◽  
Christian Buddenborg ◽  
Lilo Greune ◽  
...  

ABSTRACT Autotransporters of gram-negative bacteria are single-peptide secretion systems that consist of a functional N-terminal α-domain (“passenger”) fused to a C-terminal β-domain (“translocator”). How passenger proteins are translocated through the outer membrane has not been resolved, and at present essentially three different models are discussed. In the widely accepted “hairpin model” the passenger proteins are translocated through a channel formed by the β-barrel of the translocator that is integrated in the outer membrane. This model has been challenged by a recent proposal for a general autotransporter model suggesting that there is a hexameric translocation pore that is generated by the oligomerization of six β-domains. A third model suggests that conserved Omp85 participates in autotransporter integration and passenger protein translocation. To examine these models, in this study we investigated the presence of putative oligomeric structures of the translocator of the autotransporter adhesin involved in diffuse adherence (AIDA) in vivo by cross-linking techniques. Furthermore, the capacity of isolated AIDA fusion proteins to form oligomers was studied in vitro by several complementary analytical techniques, such as analytical gel filtration, electron microscopy, immunogold labeling, and cross-linking of recombinant autotransporter proteins in which different passenger proteins were fused to the AIDA translocator. Our results show that the AIDA translocator is mostly present as a monomer. Only a fraction of the AIDA autotransporter was found to form dimers on the bacterial surface and in solution. Higher-order structures, such as hexamers, were not detected either in vivo or in vitro and can therefore be excluded as functional moieties for the AIDA autotransporter.

2020 ◽  
Author(s):  
Juliette Létoquart ◽  
Kilian Dekoninck ◽  
Cédric Laguri ◽  
Pascal Demange ◽  
Robin Bevernaegie ◽  
...  

AbstractOmpA, a protein commonly found in the outer membrane of Gram-negative bacteria, has served as a paradigm for the study of β-barrel proteins for several decades. In Escherichia coli, OmpA was previously reported to form complexes with RcsF, a surface-exposed lipoprotein that triggers the Rcs stress response when damage occurs in the outer membrane and the peptidoglycan. How OmpA interacts with RcsF and whether this interaction allows RcsF to reach the surface has remained unclear. Here, we integrated in vivo and in vitro approaches to establish that RcsF interacts with the C-terminal, periplasmic domain of OmpA, not with the N-terminal β-barrel, thus implying that RcsF does not reach the bacterial surface via OmpA. Our results reveal a novel function for OmpA in the cell envelope: OmpA competes with the inner membrane protein IgaA, the downstream Rcs component, for RcsF binding across the periplasm, thereby regulating the Rcs response.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Kilian Dekoninck ◽  
Juliette Létoquart ◽  
Cédric Laguri ◽  
Pascal Demange ◽  
Robin Bevernaegie ◽  
...  

OmpA, a protein commonly found in the outer membrane of Gram-negative bacteria, has served as a paradigm for the study of β-barrel proteins for several decades. In Escherichia coli, OmpA was previously reported to form complexes with RcsF, a surface-exposed lipoprotein that triggers the Rcs stress response when damage occurs in the outer membrane and the peptidoglycan. How OmpA interacts with RcsF and whether this interaction allows RcsF to reach the surface has remained unclear. Here, we integrated in vivo and in vitro approaches to establish that RcsF interacts with the C-terminal, periplasmic domain of OmpA, not with the N-terminal β-barrel, thus implying that RcsF does not reach the bacterial surface via OmpA. Our results suggest a novel function for OmpA in the cell envelope: OmpA competes with the inner membrane protein IgaA, the downstream Rcs component, for RcsF binding across the periplasm, thereby regulating the Rcs response.


1969 ◽  
Vol 22 (03) ◽  
pp. 577-583 ◽  
Author(s):  
M.M.P Paulssen ◽  
A.C.M.G.B Wouterlood ◽  
H.L.M.A Scheffers

SummaryFactor VIII can be isolated from plasma proteins, including fibrinogen by chromatography on agarose. The best results were obtained with Sepharose 6B. Large scale preparation is also possible when cryoprecipitate is separated by chromatography. In most fractions containing factor VIII a turbidity is observed which may be due to the presence of chylomicrons.The purified factor VIII was active in vivo as well as in vitro.


1977 ◽  
Vol 37 (01) ◽  
pp. 073-080 ◽  
Author(s):  
Knut Gjesdal ◽  
Duncan S. Pepper

SummaryHuman platelet factor 4 (PF-4) showed a reaction of complete identity with PF-4 from Macaca mulatta when tested against rabbit anti-human-PF-4. Such immunoglobulin was used for quantitative precipitation of in vivo labelled PF-4 in monkey serum. The results suggest that the active protein had an intra-platelet half-life of about 21 hours. In vitro 125I-labelled human PF-4 was injected intravenously into two monkeys and isolated by immuno-precipita-tion from platelet-poor plasma and from platelets disrupted after gel-filtration. Plasma PF-4 was found to have a half-life of 7 to 11 hours. Some of the labelled PF-4 was associated with platelets and this fraction had a rapid initial disappearance rate and a subsequent half-life close to that of plasma PF-4. The results are compatible with the hypothesis that granular PF-4 belongs to a separate compartment, whereas membrane-bound PF-4 and plasma PF-4 may interchange.


2021 ◽  
Vol 89 (2) ◽  
pp. 15
Author(s):  
M. R. Mozafari ◽  
E. Mazaheri ◽  
K. Dormiani

Introduction: Bioactive encapsulation and drug delivery systems have already found their way to the market as efficient therapeutics to combat infections, viral diseases and different types of cancer. The fields of food fortification, nutraceutical supplementation and cosmeceuticals have also been getting the benefit of encapsulation technologies. Aim: Successful formulation of such therapeutic and nutraceutical compounds requires thorough analysis and assessment of certain characteristics including particle number and surface area without the need to employ sophisticated analytical techniques. Solution: Here we present simple mathematical formulas and equations used in the research and development of drug delivery and controlled release systems employed for bioactive encapsulation and targeting the sites of infection and cancer in vitro and in vivo. Systems covered in this entry include lipidic vesicles, polymeric capsules, metallic particles as well as surfactant- and tocopherol-based micro- and nanocarriers.


2009 ◽  
Vol 102 (09) ◽  
pp. 454-459 ◽  
Author(s):  
Anne Koehler ◽  
Goetz Nowak ◽  
Mercedes López

SummaryDipetarudin was coupled to polyethylene glycol (PEG)-5000 residues in order to improve its pharmacokinetic profile and to enhance its anticoagulant efficacy. The resulting compounds, mono-and di-PEGylated dipetarudin were purified by gel filtration. Mono-PEGylated dipetarudin exhibited similar activity like its non-conjugated equivalent both in vitro and in vivo. However, di-PEGylated dipetarudin showed longer distribution and elimination half-lives and higher area under the time-concentration curve in comparison with the unmodified inhibitor which may be attributed to decreased renal clearance. Futhermore, ratio k 12/k 21 decreased when the number of PEG chains coupled to dipetarudin increased. It means that the intercompartment transfer of dipetarudin, characterised by a fast distribution and a high retention in the peripheral compartment, is reverted by coupling to PEG. Thus, the transfer of mono-PEGylated dipetarudin between these compartments is similar in both senses and the transfer of di-PEGylated dipetarudin is slower from vascular to extravascular compartment than vice versa. Our results show that di-PEGylated dipetarudin produces a better and longer anticoagulant effect than unmodified dipetarudin which is a desirable attribute for future therapeutic application.


2007 ◽  
Vol 88 (11) ◽  
pp. 2977-2984 ◽  
Author(s):  
Don Stoltz ◽  
Renée Lapointe ◽  
Andrea Makkay ◽  
Michel Cusson

Unlike most viruses, the mature ichnovirus particle possesses two unit membrane envelopes. Following loss of the outer membrane in vivo, nucleocapsids are believed to gain entry into the cytosol via a membrane fusion event involving the inner membrane and the plasma membrane of susceptible host cells; accordingly, experimentally induced damage to the outer membrane might be expected to increase infectivity. Here, in an attempt to develop an in vitro model system for studying ichnovirus infection, we show that digitonin-induced disruption of the virion outer membrane not only increases infectivity, but also uncovers an activity not previously associated with any polydnavirus: fusion from without.


1979 ◽  
Vol 177 (2) ◽  
pp. 559-567 ◽  
Author(s):  
C S Heng-Khoo ◽  
R B Rucker ◽  
K W Buckingham

Evidence is presented for the presence of precursor to tropoelastin in chick arterial extracts. The precursor is approx. 100 000 daltons in size. It is suggested to be a precursor to tropoelastin (72 000 daltons). This protein may be observed in culture in vitro if appropriate precautions are taken to inhibit proteolysis. Once synthesized, it appears to be converted into tropoelastin within 10–20 min. The protein may also be detected in vivo. When 1-day-old cockerels were fed on a copper-deficient diet (less than 1 p.p.m. to inhibit cross-linking) containing epsilon-aminohexanoic acid (0.2%) to retard proteolysis and then injected wiht [3H]valine, extraction of arterial proteins 12h after injection resulted in detection of two major peaks of [3H]valine-labelled protein with pI values of pH 7.0 and 5.0 respectively. The protein that focused at pH 7.0 was estimated to be about 100 000 daltons in size and could be shown to be converted into a more basic protein with the properties of tropoelastin. It is speculated that the protein with pI 5.0 may be yet another extension peptide. The data appear to be in keeping with similar observations by ourselves and others that a proform of tropoelastin exists, and, in at least one step before conversion into tropoelastin, exists as a 100 000-dalton protein subunit.


1979 ◽  
Vol 150 (5) ◽  
pp. 1241-1254 ◽  
Author(s):  
S G Langreth ◽  
R T Reese

The antigenicity of altered structures induced by Plasmodium falciparum in the membranes of infected Aotus monkey and human erythrocytes was examined. Antisera were obtained from monkeys made immune to malaria. Bound antibodies were shown to be localized on the knob protrusions of infected erythrocytes of both human and monkey origin and from both in vitro and in vivo infections. Therefore, P. falciparum infection has produced similar antigenic changes in the erythrocyte surfaces of both man and monkey. Uninfected erythrocytes and all knobless-infected erythrocytes bound no antibody from immune sera. Strains of P. falciparum from widely different geographic areas that were cultured in vitro in human erythrocytes induced structures (knobs) which have common antigenicity. Merozoites were agglutinated by cross-linking of their cell coats when incubated with immune sera. The binding of ferritin-labeled antibody was heavy on the coats of both homologous and heterologous strains of the parasite, indicating that the merozoite surfaces of these strains share common antigens.


Sign in / Sign up

Export Citation Format

Share Document