scholarly journals The Brucella abortus Cyclic β-1,2-Glucan Virulence Factor Is Substituted with O-Ester-Linked Succinyl Residues

2006 ◽  
Vol 188 (14) ◽  
pp. 5003-5013 ◽  
Author(s):  
Mara S. Roset ◽  
Andrés E. Ciocchini ◽  
Rodolfo A. Ugalde ◽  
Nora Iñón de Iannino

ABSTRACT Brucella periplasmic cyclic β-1,2-glucan plays an important role during bacterium-host interaction. Nuclear magnetic resonance spectrometry analysis, thin-layer chromatography, and DEAE-Sephadex chromatography were used to characterize Brucella abortus cyclic glucan. In the present study, we report that a fraction of B. abortus cyclic β-1,2-glucan is substituted with succinyl residues, which confer anionic character on the cyclic β-1,2-glucan. The oligosaccharide backbone is substituted at C-6 positions with an average of two succinyl residues per glucan molecule. This O-ester-linked succinyl residue is the only substituent of Brucella cyclic glucan. A B. abortus open reading frame (BAB1_1718) homologous to Rhodobacter sphaeroides glucan succinyltransferase (OpgC) was identified as the gene encoding the enzyme responsible for cyclic glucan modification. This gene was named cgm for cyclic glucan modifier and is highly conserved in Brucella melitensis and Brucella suis. Nucleotide sequencing revealed that B. abortus cgm consists of a 1,182-bp open reading frame coding for a predicted membrane protein of 393 amino acid residues (42.7 kDa) 39% identical to Rhodobacter sphaeroides succinyltransferase. cgm null mutants in B. abortus strains 2308 and S19 produced neutral glucans without succinyl residues, confirming the identity of this protein as the cyclic-glucan succinyltransferase enzyme. In this study, we demonstrate that succinyl substituents of cyclic β-1,2-glucan of B. abortus are necessary for hypo-osmotic adaptation. On the other hand, intracellular multiplication and mouse spleen colonization are not affected in cgm mutants, indicating that cyclic-β-1,2-glucan succinylation is not required for virulence and suggesting that no low-osmotic stress conditions must be overcome during infection.

1999 ◽  
Vol 342 (2) ◽  
pp. 439-448 ◽  
Author(s):  
Paul S. DOBBIN ◽  
Julea N. BUTT ◽  
Anne K. POWELL ◽  
Graeme A. REID ◽  
David J. RICHARDSON

A 63.9 kDa periplasmic tetrahaem flavocytochrome c3, designated Ifc3, was found to be expressed in Shewanellafrigidimarina NCIMB400 grown anaerobically with ferric citrate or ferric pyrophosphate as the sole terminal electron acceptor, but not in anaerobic cultures of the bacterium with other respiratory substrates. Ifc3 was purified to homogeneity and revealed by biochemical, spectroscopic and primary structure analyses to contain four low-spin bis-His-ligated c3-haems, with midpoint reduction potentials of -73, -141, -174 and -259 mV. A low-potential flavin was present in the form of non-covalently bound FAD; the protein possessed a unidirectional fumarate reductase activity. Disruption of the chromosomal gene encoding Ifc3, ifcA, did not lead to a significant change in the rate of Fe3+ reduction in batch culture. However, during such growth the Ifc3-deficient mutant produced both a 35 kDa periplasmic c-type cytochrome and a 45 kDa membrane-associated c-type cytochrome at markedly higher levels than did the parent strain. Nucleotide sequencing data from directly upstream of ifcA indicated the presence of an open reading frame encoding a putative outer-membrane β-barrel protein of 324 amino acid residues.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1707-1715 ◽  
Author(s):  
J L Patton-Vogt ◽  
S A Henry

Abstract Phosphatidylinositol catabolism in Saccharomyces cerevisiae cells cultured in media containing inositol results in the release of glycerophosphoinositol (GroPIns) into the medium. As the extracellular concentration of inositol decreases with growth, the released GroPIns is transported back into the cell. Exploiting the ability of the inositol auxotroph, ino1, to use exogenous GroPIns as an inositol source, we have isolated mutants (Git−) defective in the uptake and metabolism of GroPIns. One mutant was found to be affected in the gene encoding the transcription factor, SPT7. Mutants of the positive regulatory gene INO2, but not of its partner, INO4, also have the Git− phenotype. Another mutant was complemented by a single open reading frame (ORF) termed GIT1 (glycerophosphoinositol). This ORF consists of 1556 bp predicted to encode a polypeptide of 518 amino acids and 57.3 kD. The predicted Git1p has similarity to a variety of S. cerevisiae transporters, including a phosphate transporter (Pho84p), and both inositol transporters (Itr1p and Itr2p). Furthermore, Git1p contains a sugar transport motif and 12 potential membrane-spanning domains. Transport assays performed on a git1 mutant together with the above evidence indicate that the GIT1 gene encodes a permease involved in the uptake of GroPIns.


2000 ◽  
Vol 66 (12) ◽  
pp. 5480-5483 ◽  
Author(s):  
Sean S. Dineen ◽  
Marite Bradshaw ◽  
Eric A. Johnson

ABSTRACT Boticin B is a heat-stable bacteriocin produced byClostridium botulinum strain 213B that has inhibitory activity against various strains of C. botulinum and related clostridia. The gene encoding the bacteriocin was localized to a 3.0-kb HindIII fragment of an 18.8-kb plasmid, cloned, and sequenced. DNA sequencing revealed the boticin B structural gene,btcB, to be an open reading frame encoding 50 amino acids. A C. botulinum strain 62A transconjugant containing theHindIII fragment inserted into a clostridial shuttle vector expressed boticin B, although at much lower levels than those observed in C. botulinum 213B. To our knowledge, this is the first demonstration and characterization of a bacteriocin from toxigenic group I C. botulinum.


1995 ◽  
Vol 15 (10) ◽  
pp. 5329-5338 ◽  
Author(s):  
K Onel ◽  
M P Thelen ◽  
D O Ferguson ◽  
R L Bennett ◽  
W K Holloman

The REC1 gene of Ustilago maydis has an uninterrupted open reading frame, predicted from the genomic sequence to encode a protein of 522 amino acid residues. Nevertheless, an intron is present, and functional activity of the gene in mitotic cells requires an RNA processing event to remove the intron. This results in a change in reading frame and production of a protein of 463 amino acid residues. The 3'-->5' exonuclease activity of proteins derived from the REC1 genomic open reading frame, the intronless open reading frame, and several mutants was investigated. The mutants included a series of deletions constructed by removing restriction fragments at the 3' end of the cloned REC1 gene and a set of mutant alleles previously isolated in screens for radiation sensitivity. All of these proteins were overproduced in Escherichia coli as N-terminal polyhistidine-tagged fusions that were subsequently purified by immobilized metal affinity chromatography and assayed for 3'-->5' exonuclease activity. The results indicated that elimination of the C-terminal third of the protein did not result in a serious reduction in 3'-->5' exonuclease activity, but deletion into the midsection caused a severe loss of activity. The biological activity of the rec1-1 allele, which encodes a truncated polypeptide with full 3'-->5' exonuclease activity, and the rec1-5 allele, which encodes a more severely truncated polypeptide with no exonuclease activity, was investigated. The two mutants were equally sensitive to the lethal effect of UV light, but the spontaneous mutation rate was elevated 10-fold over the wild-type rate in the rec1-1 mutant and 100-fold in the rec1-5 mutant. The elevated spontaneous mutation rate correlated with the ablation of exonuclease activity, but the radiation sensitivity did not. These results indicate that the C-terminal portion of the Rec1 protein is not essential for exonuclease activity but is crucial in the role of REC1 in DNA damage repair.


Genetics ◽  
1990 ◽  
Vol 125 (3) ◽  
pp. 495-503 ◽  
Author(s):  
P Haffter ◽  
T W McMullin ◽  
T D Fox

Abstract Translation of the Saccharomyces cerevisiae mitochondrial mRNA encoding cytochrome c oxidase subunit III (coxIII) specifically requires the products of at least three nuclear genes, PET122, PET494 and PET54. pet122 mutations that remove 24-67 amino acid residues from the carboxyterminus of the gene product were found to be suppressed by unlinked nuclear mutations. These unlinked suppressors fail to suppress both a pet122 missense mutation and a complete pet122 deletion. One of the suppressor mutations causes a heat-sensitive nonrespiratory growth phenotype in an otherwise wild-type strain and reduces translation of all mitochondrial gene products in cells grown at high temperature. This suppressor maps to a newly identified gene on chromosome XV termed PET123. The sequence of a DNA fragment carrying PET123 contains one major open reading frame encoding a basic protein of 318 amino acids. Inactivation of the chromosomal copy of PET123 by interruption of this open reading frame causes cells to become rho- (sustain large deletions in their mtDNA). This phenotype is characteristic for null alleles of genes whose products are essential for general mitochondrial protein synthesis. Thus our data strongly suggest that the PET123 protein is a component of the mitochondrial translation apparatus that interacts directly with the coxIII-mRNA-specific translational activator PET122.


1991 ◽  
Vol 11 (5) ◽  
pp. 2593-2608 ◽  
Author(s):  
D X Tishkoff ◽  
A W Johnson ◽  
R D Kolodner

Vegetatively grown Saccharomyces cerevisiae cells contain an activity that promotes a number of homologous pairing reactions. A major portion of this activity is due to strand exchange protein 1 (Sep1), which was originally purified as a 132,000-Mr species (R. Kolodner, D. H. Evans, and P. T. Morrison, Proc. Natl. Acad. Sci. USA 84:5560-5564, 1987). The gene encoding Sep1 was cloned, and analysis of the cloned gene revealed a 4,587-bp open reading frame capable of encoding a 175,000-Mr protein. The protein encoded by this open reading frame was overproduced and purified and had a relative molecular weight of approximately 160,000. The 160,000-Mr protein was at least as active in promoting homologous pairing as the original 132,000-Mr species, which has been shown to be a fragment of the intact 160,000-Mr Sep1 protein. The SEP1 gene mapped to chromosome VII within 20 kbp of RAD54. Three Tn10LUK insertion mutations in the SEP1 gene were characterized. sep1 mutants grew more slowly than wild-type cells, showed a two- to fivefold decrease in the rate of spontaneous mitotic recombination between his4 heteroalleles, and were delayed in their ability to return to growth after UV or gamma irradiation. Sporulation of sep1/sep1 diploids was defective, as indicated by both a 10- to 40-fold reduction in spore formation and reduced spore viability of approximately 50%. The majority of sep1/sep1 diploid cells arrested in meiosis after commitment to recombination but prior to the meiosis I cell division. Return-to-growth experiments showed that sep1/sep1 his4X/his4B diploids exhibited a five- to sixfold greater meiotic induction of His+ recombinants than did isogenic SEP1/SEP1 strains. sep1/sep1 mutants also showed an increased frequency of exchange between HIS4, LEU2, and MAT and a lack of positive interference between these markers compared with wild-type controls. The interaction between sep1, rad50, and spo13 mutations suggested that SEP1 acts in meiosis in a pathway that is parallel to the RAD50 pathway.


1998 ◽  
Vol 64 (2) ◽  
pp. 549-554 ◽  
Author(s):  
Ji-Quan Liu ◽  
Saeko Ito ◽  
Tohru Dairi ◽  
Nobuya Itoh ◽  
Michihiko Kataoka ◽  
...  

ABSTRACT A low-specificity l-threonine aldolase (l-TA) gene from Pseudomonas sp. strain NCIMB 10558 was cloned and sequenced. The gene contains an open reading frame consisting of 1,041 nucleotides corresponding to 346 amino acid residues. The gene was overexpressed in Escherichia colicells, and the recombinant enzyme was purified and characterized. The enzyme, requiring pyridoxal 5′-phosphate as a coenzyme, is strictlyl specific at the α position, whereas it cannot distinguish between threo and erythro forms at the β position. In addition to threonine, the enzyme also acts on various other l-β-hydroxy-α-amino acids, includingl-β-3,4-dihydroxyphenylserine,l-β-3,4-methylenedioxyphenylserine, andl-β-phenylserine. The predicted amino acid sequence displayed less than 20% identity with those of low-specificityl-TA from Saccharomyces cerevisiae,l-allo-threonine aldolase from Aeromonas jandaei, and four relevant hypothetical proteins from other microorganisms. However, lysine 207 of low-specificity l-TA from Pseudomonas sp. strain NCIMB 10558 was found to be completely conserved in these proteins. Site-directed mutagenesis experiments showed that substitution of Lys207 with Ala or Arg resulted in a significant loss of enzyme activity, with the corresponding disappearance of the absorption maximum at 420 nm. Thus, Lys207 of thel-TA probably functions as an essential catalytic residue, forming an internal Schiff base with the pyridoxal 5′-phosphate of the enzyme to catalyze the reversible aldol reaction.


2003 ◽  
Vol 285 (6) ◽  
pp. R1373-R1383 ◽  
Author(s):  
Kwang-Lae Hoe ◽  
Ines Armando ◽  
Gustavo Baiardi ◽  
Taduru Sreenath ◽  
Ashok Kulkarni ◽  
...  

We isolated a cDNA clone encoding the gerbil AT2 receptor (gAT2) gene from a gerbil adrenal gland cDNA library. The full-length cDNA contains a 1,089-bp open reading frame encoding 363 amino acid residues with 90.9, 96.1, and 95.6% identity with the human (hAT2), rat (rAT2), and mouse AT2 (mAT2) receptors, respectively. There are at least seven nonconserved amino acids in the NH2-terminal domain and in positions Val196, Val217, and Met293, important for angiotensin (ANG) II but not for CGP-42112 binding. Displacement studies in adrenal sections revealed that affinity of the gAT2 receptor was 10-20 times lower for ANG II, ANG III, and PD-123319 than was affinity of the rAT2 receptor. The affinity of each receptor remained the same for CGP-42112. When transfected into COS-7 cells, the gAT2 receptor shows affinity for ANG II that is three times lower than that shown by the hAT2 receptor, whereas affinities for ANG III and the AT2 receptor ligands CGP-42112 and PD-123319 were similar. Autoradiography in sections of the gerbil head showed higher binding in muscles, retina, skin, and molars at embryonic day 19 than at 1 wk of age. In situ hybridization and emulsion autoradiography revealed that at embryonic day 19 the gAT2 receptor mRNA was highly localized to the base of the dental papilla of maxillary and mandibular molars. Our results suggest selective growth-related functions in late gestation and early postnatal periods for the gAT2 receptor and provide an essential basis for future mutagenesis studies to further define structural requirements for agonist binding.


2001 ◽  
Vol 69 (10) ◽  
pp. 6537-6540 ◽  
Author(s):  
Michel S. Zygmunt ◽  
Marı́a A. Dı́az ◽  
Ana P. Teixeira-Gomes ◽  
Axel Cloeckaert

ABSTRACT The Brucella melitensis sucB gene encoding the dihydrolipoamide succinyltransferase (E2o) enzyme (previously identified as an immunogenic protein in infected sheep) was cloned and sequenced. The amino acid sequence predicted from the cloned gene revealed 88.8 and 51.2% identity to the dihydrolipoamide succinyltransferase SucB protein from Brucella abortus andEscherichia coli, respectively. Sera from naturally infected sheep showed antibody reactivity against the recombinant SucB protein.


Sign in / Sign up

Export Citation Format

Share Document