scholarly journals Enzymatic and Mutational Analysis of the PruA Pteridine Reductase Required for Pterin-Dependent Control of Biofilm Formation in Agrobacterium tumefaciens

2020 ◽  
Vol 202 (16) ◽  
Author(s):  
Monica Labine ◽  
Lisa DePledge ◽  
Nathan Feirer ◽  
Jennifer Greenwich ◽  
Clay Fuqua ◽  
...  

ABSTRACT Pterins are ubiquitous biomolecules with diverse functions, including roles as cofactors, pigments, and redox mediators. Recently, a novel pterin-dependent signaling pathway that controls biofilm formation was identified in the plant pathogen Agrobacterium tumefaciens. A key player in this pathway is a pteridine reductase, termed PruA, where its enzymatic activity has been shown to control surface attachment and limit biofilm formation. Here, we biochemically characterized PruA to investigate the catalytic properties and the substrate specificity of this pteridine reductase. PruA demonstrated maximal catalytic efficiency with dihydrobiopterin and comparable activities with the stereoisomers dihydromonapterin and dihydroneopterin. Since A. tumefaciens does not synthesize or utilize biopterins, the likely physiological substrate is dihydromonapterin or dihydroneopterin or both. Notably, PruA did not exhibit pteridine reductase activity with dihydrofolate or fully oxidized pterins. Site-directed mutagenesis studies of a conserved tyrosine residue, the key component of a putative catalytic triad, indicated that this tyrosine is not directly involved in PruA catalysis but may be important for substrate or cofactor binding. Additionally, mutagenesis of the arginine residue in the N-terminal TGX3RXG motif significantly reduced the catalytic efficiency of PruA, supporting its proposed role in pterin binding and catalysis. Finally, we report on the enzymatic characterization of PruA homologs from Pseudomonas aeruginosa and Brucella abortus, thus expanding the roles and potential significance of pteridine reductases in diverse bacteria. IMPORTANCE Biofilms are complex multicellular communities that are formed by diverse bacteria. In the plant pathogen Agrobacterium tumefaciens, the transition from a free-living motile state to a nonmotile biofilm state is governed by a novel signaling pathway involving small molecules called pterins. The involvement of pterins in biofilm formation is unexpected and prompts many questions about the molecular details of this pathway. This work biochemically characterized the PruA pteridine reductase involved in the signaling pathway to reveal its enzymatic properties and substrate preference, thus providing important insight into pterin biosynthesis and its role in A. tumefaciens biofilm control. Additionally, the enzymatic characteristics of related pteridine reductases from mammalian pathogens were examined to uncover potential roles of these enzymes in other bacteria.

mBio ◽  
2015 ◽  
Vol 6 (4) ◽  
Author(s):  
Nathan Feirer ◽  
Jing Xu ◽  
Kylie D. Allen ◽  
Benjamin J. Koestler ◽  
Eric L. Bruger ◽  
...  

ABSTRACTThe motile-to-sessile transition is an important lifestyle switch in diverse bacteria and is often regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). In general, high c-di-GMP concentrations promote attachment to surfaces, whereas cells with low levels of signal remain motile. In the plant pathogenAgrobacterium tumefaciens, c-di-GMP controls attachment and biofilm formation via regulation of a unipolar polysaccharide (UPP) adhesin. The levels of c-di-GMP inA. tumefaciensare controlled in part by the dual-function diguanylate cyclase-phosphodiesterase (DGC-PDE) protein DcpA. In this study, we report that DcpA possesses both c-di-GMP synthesizing and degrading activities in heterologous and native genetic backgrounds, a binary capability that is unusual among GGDEF-EAL domain-containing proteins. DcpA activity is modulated by a pteridine reductase called PruA, with DcpA acting as a PDE in the presence of PruA and a DGC in its absence. PruA enzymatic activity is required for the control of DcpA and through this control, attachment and biofilm formation. Intracellular pterin analysis demonstrates that PruA is responsible for the production of a novel pterin species. In addition, the control of DcpA activity also requires PruR, a protein encoded directly upstream of DcpA with a predicted molybdopterin-binding domain. PruR is hypothesized to be a potential signaling intermediate between PruA and DcpA through an as-yet-unidentified mechanism. This study provides the first prokaryotic example of a pterin-mediated signaling pathway and a new model for the regulation of dual-function DGC-PDE proteins.IMPORTANCEPathogenic bacteria often attach to surfaces and form multicellular communities called biofilms. Biofilms are inherently resilient and can be difficult to treat, resisting common antimicrobials. Understanding how bacterial cells transition to the biofilm lifestyle is essential in developing new therapeutic strategies. We have characterized a novel signaling pathway that plays a dominant role in the regulation of biofilm formation in the model pathogenAgrobacterium tumefaciens. This control pathway involves small metabolites called pterins, well studied in eukaryotes, but this is the first example of pterin-dependent signaling in bacteria. The described pathway controls levels of an important intracellular second messenger (cyclic diguanylate monophosphate) that regulates key bacterial processes such as biofilm formation, motility, and virulence. Pterins control the balance of activity for an enzyme that both synthesizes and degrades the second messenger. These findings reveal a complex, multistep pathway that modulates this enzyme, possibly identifying new targets for antibacterial intervention.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Hui-Hui Su ◽  
Fei Peng ◽  
Pei Xu ◽  
Xiao-Ling Wu ◽  
Min-Hua Zong ◽  
...  

Abstract Background Glucaric acid, one of the aldaric acids, has been declared a “top value-added chemical from biomass”, and is especially important in the food and pharmaceutical industries. Biocatalytic production of glucaric acid from glucuronic acid is more environmentally friendly, efficient and economical than chemical synthesis. Uronate dehydrogenases (UDHs) are the key enzymes for the preparation of glucaric acid in this way, but the poor thermostability and low activity of UDH limit its industrial application. Therefore, improving the thermostability and activity of UDH, for example by semi-rational design, is a major research goal. Results In the present work, three UDHs were obtained from different Agrobacterium tumefaciens strains. The three UDHs have an approximate molecular weight of 32 kDa and all contain typically conserved UDH motifs. All three UDHs showed optimal activity within a pH range of 6.0–8.5 and at a temperature of 30 °C, but the UDH from A. tumefaciens (At) LBA4404 had a better catalytic efficiency than the other two UDHs (800 vs 600 and 530 s−1 mM−1). To further boost the catalytic performance of the UDH from AtLBA4404, site-directed mutagenesis based on semi-rational design was carried out. An A39P/H99Y/H234K triple mutant showed a 400-fold improvement in half-life at 59 °C, a 5 °C improvement in $$ {\text{T}}_{ 5 0}^{ 1 0} $$ T 50 10 value and a 2.5-fold improvement in specific activity at 30 °C compared to wild-type UDH. Conclusions In this study, we successfully obtained a triple mutant (A39P/H99Y/H234K) with simultaneously enhanced activity and thermostability, which provides a novel alternative for the industrial production of glucaric acid from glucuronic acid.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Roghayyeh Baghban ◽  
Safar Farajnia ◽  
Younes Ghasemi ◽  
Reyhaneh Hoseinpoor ◽  
Azam Safary ◽  
...  

Abstract Background Ocriplasmin (Jetrea) is using for the treatment of symptomatic vitreomacular adhesion. This enzyme undergoes rapid inactivation and limited activity duration as a result of its autolytic nature after injection within the eye. Moreover, the proteolytic activity can cause photoreceptor damage, which may result in visual impairment in more serious cases. Results The present research aimed to reduce the disadvantages of ocriplasmin using site-directed mutagenesis. To reduce the autolytic activity of ocriplasmin in the first variant, lysine 156 changed to glutamic acid and, in the second variant for the proteolytic activity reduction, alanine 59 mutated to threonine. The third variant contained both mutations. Expression of wild type and three mutant variants of ocriplasmin constructs were done in the Pichia pastoris expression system. The mutant variants were analyzed in silico and in vitro and compared to the wild type. The kinetic parameters of ocriplasmin variants showed both variants with K156E substitution were more resistant to autolytic degradation than wild-type. These variants also exhibited reduced Kcat and Vmax values. An increase in their Km values, leading to a decreased catalytic efficiency (the Kcat/Km ratio) of autolytic and mixed variants. Moreover, in the variant with A59T mutation, Kcat and Vmax values have reduced compared to wild type. The mix variants showed the most increase in Km value (almost 2-fold) as well as reduced enzymatic affinity to the substrate. Thus, the results indicated that combined mutations at the ocriplasmin sequence were more effective compared with single mutations. Conclusions The results indicated such variants represent valuable tools for the investigation of therapeutic strategies aiming at the non-surgical resolution of vitreomacular adhesion.


2016 ◽  
Vol 198 (19) ◽  
pp. 2682-2691 ◽  
Author(s):  
Yi Wang ◽  
Sok Ho Kim ◽  
Ramya Natarajan ◽  
Jason E. Heindl ◽  
Eric L. Bruger ◽  
...  

ABSTRACTIn bacteria, the functions of polyamines, small linear polycations, are poorly defined, but these metabolites can influence biofilm formation in several systems. Transposon insertions in an ornithine decarboxylase (odc) gene inAgrobacterium tumefaciens, predicted to direct synthesis of the polyamine putrescine from ornithine, resulted in elevated cellulose. Null mutants forodcgrew somewhat slowly in a polyamine-free medium but exhibited increased biofilm formation that was dependent on cellulose production. Spermidine is an essential metabolite inA. tumefaciensand is synthesized from putrescine inA. tumefaciensvia the stepwise actions of carboxyspermidine dehydrogenase (CASDH) and carboxyspermidine decarboxylase (CASDC). Exogenous addition of either putrescine or spermidine to theodcmutant returned biofilm formation to wild-type levels. Low levels of exogenous spermidine restored growth to CASDH and CASDC mutants, facilitating weak biofilm formation, but this was dampened with increasing concentrations. Norspermidine rescued growth for theodc, CASDH, and CASDC mutants but did not significantly affect their biofilm phenotypes, whereas in the wild type, it stimulated biofilm formation and depressed spermidine levels. Theodcmutant produced elevated levels of cyclic diguanylate monophosphate (c-di-GMP), exogenous polyamines modulated these levels, and expression of a c-di-GMP phosphodiesterase reversed the enhanced biofilm formation. Prior work revealed accumulation of the precursors putrescine and carboxyspermidine in the CASDH and CASDC mutants, respectively, but unexpectedly, both mutants accumulated homospermidine; here, we show that this requires a homospermidine synthase (hss) homologue.IMPORTANCEPolyamines are small, positively charged metabolites that are nearly ubiquitous in cellular life. They are often essential in eukaryotes and more variably in bacteria. Polyamines have been reported to influence the surface-attached biofilm formation of several bacteria. InAgrobacterium tumefaciens, mutants with diminished levels of the polyamine spermidine are stimulated for biofilm formation, and exogenous provision of spermidine decreases biofilm formation. Spermidine is also essential forA. tumefaciensgrowth, but the related polyamine norspermidine exogenously rescues growth and does not diminish biofilm formation, revealing that the growth requirement and biofilm control are separable. Polyamine control of biofilm formation appears to function via effects on the cellular second messenger cyclic diguanylate monophosphate, regulating the transition from a free-living to a surface-attached lifestyle.


2012 ◽  
Vol 78 (11) ◽  
pp. 3880-3884 ◽  
Author(s):  
Yu-Ri Lim ◽  
Soo-Jin Yeom ◽  
Deok-Kun Oh

ABSTRACTA triple-site variant (W17Q N90A L129F) of mannose-6-phosphate isomerase fromGeobacillus thermodenitrificanswas obtained by combining variants with residue substitutions at different positions after random and site-directed mutagenesis. The specific activity and catalytic efficiency (kcat/Km) forl-ribulose isomerization of this variant were 3.1- and 7.1-fold higher, respectively, than those of the wild-type enzyme at pH 7.0 and 70°C in the presence of 1 mM Co2+. The triple-site variant produced 213 g/literl-ribose from 300 g/literl-ribulose for 60 min, with a volumetric productivity of 213 g liter−1h−1, which was 4.5-fold higher than that of the wild-type enzyme. Thekcat/Kmand productivity of the triple-site variant were approximately 2-fold higher than those of theThermus thermophilusR142N variant of mannose-6-phosphate isomerase, which exhibited the highest values previously reported.


2020 ◽  
Vol 202 (22) ◽  
Author(s):  
Alexander Kraus ◽  
Mareen Weskamp ◽  
Jennifer Zierles ◽  
Miriam Balzer ◽  
Ramona Busch ◽  
...  

ABSTRACT In any given organism, approximately one-third of all proteins have a yet-unknown function. A widely distributed domain of unknown function is DUF1127. Approximately 17,000 proteins with such an arginine-rich domain are found in 4,000 bacteria. Most of them are single-domain proteins, and a large fraction qualifies as small proteins with fewer than 50 amino acids. We systematically identified and characterized the seven DUF1127 members of the plant pathogen Agrobacterium tumefaciens. They all give rise to authentic proteins and are differentially expressed as shown at the RNA and protein levels. The seven proteins fall into two subclasses on the basis of their length, sequence, and reciprocal regulation by the LysR-type transcription factor LsrB. The absence of all three short DUF1127 proteins caused a striking phenotype in later growth phases and increased cell aggregation and biofilm formation. Protein profiling and transcriptome sequencing (RNA-seq) analysis of the wild type and triple mutant revealed a large number of differentially regulated genes in late exponential and stationary growth. The most affected genes are involved in phosphate uptake, glycine/serine homeostasis, and nitrate respiration. The results suggest a redundant function of the small DUF1127 paralogs in nutrient acquisition and central carbon metabolism of A. tumefaciens. They may be required for diauxic switching between carbon sources when sugar from the medium is depleted. We end by discussing how DUF1127 might confer such a global impact on cell physiology and gene expression. IMPORTANCE Despite being prevalent in numerous ecologically and clinically relevant bacterial species, the biological role of proteins with a domain of unknown function, DUF1127, is unclear. Experimental models are needed to approach their elusive function. We used the phytopathogen Agrobacterium tumefaciens, a natural genetic engineer that causes crown gall disease, and focused on its three small DUF1127 proteins. They have redundant and pervasive roles in nutrient acquisition, cellular metabolism, and biofilm formation. The study shows that small proteins have important previously missed biological functions. How small basic proteins can have such a broad impact is a fascinating prospect of future research.


2009 ◽  
Vol 192 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Kathy R. Claas ◽  
J. R. Parrish ◽  
L. A. Maggio-Hall ◽  
J. C. Escalante-Semerena

ABSTRACT In Salmonella enterica, the CobT enzyme activates the lower ligand base during the assembly of the nucleotide loop of adenosylcobalamin (AdoCbl) and other cobamides. Previously, mutational analysis identified a class of alleles (class M) that failed to restore AdoCbl biosynthesis during intragenic complementation studies. To learn why class M cobT mutations were deleterious, we determined the nature of three class M cobT alleles and performed in vivo and in vitro functional analyses guided by available structural data on the wild-type CobT (CobTWT) enzyme. We analyzed the effects of the variants CobT(G257D), CobT(G171D), CobT(G320D), and CobT(C160A). The latter was not a class M variant but was of interest because of the potential role of a disulfide bond between residues C160 and C256 in CobT activity. Substitutions G171D, G257D, and G320D had profound negative effects on the catalytic efficiency of the enzyme. The C160A substitution rendered the enzyme fivefold less efficient than CobTWT. The CobT(G320D) protein was unstable, and results of structure-guided site-directed mutagenesis suggest that either variants CobT(G257D) and CobT(G171D) have less affinity for 5,6-dimethylbenzimidazole (DMB) or access of DMB to the active site is restricted in these variant proteins. The reported lack of intragenic complementation among class M cobT alleles is caused in some cases by unstable proteins, and in others it may be caused by the formation of dimers between two mutant CobT proteins with residual activity that is so low that the resulting CobT dimer cannot synthesize sufficient product to keep up with even the lowest demand for AdoCbl.


2013 ◽  
Vol 79 (13) ◽  
pp. 4072-4077 ◽  
Author(s):  
Xuguo Duan ◽  
Jian Chen ◽  
Jing Wu

ABSTRACTPullulanase (EC 3.2.1.41) is a well-known starch-debranching enzyme. Its instability and low catalytic efficiency are the major factors preventing its widespread application. To address these issues, Asp437 and Asp503 of the pullulanase fromBacillus deramificanswere selected in this study as targets for site-directed mutagenesis based on a structure-guided consensus approach. Four mutants (carrying the mutations D503F, D437H, D503Y, and D437H/D503Y) were generated and characterized in detail. The results showed that the D503F, D437H, and D503Y mutants had an optimum temperature of 55°C and a pH optimum of 4.5, similar to that of the wild-type enzyme. However, the half-lives of the mutants at 60°C were twice as long as that of the wild-type enzyme. In addition, the D437H/D503Y double mutant displayed a larger shift in thermostability, with an optimal temperature of 60°C and a half-life at 60°C of more than 4.3-fold that of the wild-type enzyme. Kinetic studies showed that theKmvalues for the D503F, D437H, D503Y, and D437H/D503Y mutants decreased by 7.1%, 11.4%, 41.4%, and 45.7% and theKcat/Kmvalues increased by 10%, 20%, 140%, and 100%, respectively, compared to those of the wild-type enzyme. Mechanisms that could account for these enhancements were explored. Moreover, in conjunction with the enzyme glucoamylase, the D503Y and D437H/D503Y mutants exhibited an improved reaction rate and glucose yield during starch hydrolysis compared to those of the wild-type enzyme, confirming the enhanced properties of the mutants. The mutants generated in this study have potential applications in the starch industry.


2020 ◽  
Author(s):  
Roghayyeh Baghban ◽  
Safar Farajnia ◽  
Younes Ghasemi ◽  
Reyhaneh Hoseinpoor ◽  
Azam Safary ◽  
...  

Abstract Background: Ocriplasmin (Jetrea) is using for the treatment of symptomatic vitreomacular adhesion. This enzyme undergoes rapid inactivation and limited activities duration as a result of its autolytic and proteolytic nature after injection within the eye. Moreover, the proteolytic activities can cause photoreceptor damage, which may result in visual impairment in the more serious cases.Results: The present research aimed to reduce the disadvantages of ocriplasmin using site-directed mutagenesis. To reduce the autolytic activity of ocriplasmin in the first variant, lysine 156 changed to glutamic acid and in the second variant for the proteolytic activity reduction, alanine 59 mutated to threonine. The third variant contained both the mutations. Expression of wild type and three mutant variants of ocriplasmin constructs were done in Pichia pastoris expression system. The mutant variants analyzed in silico and in vitro and compared to the wild type. The kinetic parameters of ocriplasmin variants showed both variants with K156E substitution were more resistant to autolytic degradation than wild-type. These variants also exhibited reduced Kcat and Vmax values. An increase in their Km values, leading to a decreased catalytic efficiency (the Kcat/Km ratio) of autolytic and mix variants. Moreover, in variant with A59T mutation, Kcat and Vmax values have reduced compared to wild type. The mix variants showed the most increase in Km value (almost 2-fold) as well as reduced enzymatic affinity to the substrate. Thus, the results indicated combine mutations at ocriplasmin sequence were more effective compared with single mutations. Conclusions: The results indicated such variants represent valuable tools for the investigation of therapeutic strategies aiming at non-surgical resolution of vitreomacular adhesion.


2006 ◽  
Vol 188 (17) ◽  
pp. 6179-6183 ◽  
Author(s):  
Jung-Kul Lee ◽  
Ee-Lui Ang ◽  
Huimin Zhao

ABSTRACT Molecular modeling and mutational analysis (site-directed mutagenesis and saturation mutagenesis) were used to probe the molecular determinants of the substrate specificity of aminopyrrolnitrin oxygenase (PrnD) from Pseudomonas fluorescens Pf-5. There are 17 putative substrate-contacting residues, and mutations at two of the positions, positions 312 and 277, could modulate the enzyme substrate specificity separately or in combination. Interestingly, several of the mutants obtained exhibited higher catalytic efficiency (approximately two- to sevenfold higher) with the physiological substrate aminopyrrolnitrin than the wild-type enzyme exhibited.


Sign in / Sign up

Export Citation Format

Share Document