scholarly journals Characterization of Novel Alleles of the Escherichia coli umuDC Genes Identifies Additional Interaction Sites of UmuC with the Beta Clamp

2009 ◽  
Vol 191 (19) ◽  
pp. 5910-5920 ◽  
Author(s):  
Penny J. Beuning ◽  
Sarah Chan ◽  
Lauren S. Waters ◽  
Haripriya Addepalli ◽  
Jaylene N. Ollivierre ◽  
...  

ABSTRACT Translesion synthesis is a DNA damage tolerance mechanism by which damaged DNA in a cell can be replicated by specialized DNA polymerases without being repaired. The Escherichia coli umuDC gene products, UmuC and the cleaved form of UmuD, UmuD′, comprise a specialized, potentially mutagenic translesion DNA polymerase, polymerase V (UmuD′2C). The full-length UmuD protein, together with UmuC, plays a role in a primitive DNA damage checkpoint by decreasing the rate of DNA synthesis. It has been proposed that the checkpoint is manifested as a cold-sensitive phenotype that is observed when the umuDC gene products are overexpressed. Elevated levels of the beta processivity clamp along with elevated levels of the umuDC gene products, UmuD′C, exacerbate the cold-sensitive phenotype. We used this observation as the basis for genetic selection to identify two alleles of umuD′ and seven alleles of umuC that do not exacerbate the cold-sensitive phenotype when they are present in cells with elevated levels of the beta clamp. The variants were characterized to determine their abilities to confer the umuD′C-specific phenotype UV-induced mutagenesis. The umuD variants were assayed to determine their proficiencies in UmuD cleavage, and one variant (G129S) rendered UmuD noncleaveable. We found at least two UmuC residues, T243 and L389, that may further define the beta binding region on UmuC. We also identified UmuC S31, which is predicted to bind to the template nucleotide, as a residue that is important for UV-induced mutagenesis.

Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1599-1610 ◽  
Author(s):  
Bradley T Smith ◽  
Graham C Walker

Abstract The cellular response to DNA damage that has been most extensively studied is the SOS response of Escherichia coli. Analyses of the SOS response have led to new insights into the transcriptional and posttranslational regulation of processes that increase cell survival after DNA damage as well as insights into DNA-damage-induced mutagenesis, i.e., SOS mutagenesis. SOS mutagenesis requires the recA and umuDC gene products and has as its mechanistic basis the alteration of DNA polymerase III such that it becomes capable of replicating DNA containing miscoding and noncoding lesions. Ongoing investigations of the mechanisms underlying SOS mutagenesis, as well as recent observations suggesting that the umuDC operon may have a role in the regulation of the E. coli cell cycle after DNA damage has occurred, are discussed.


2001 ◽  
Vol 183 (9) ◽  
pp. 2897-2909 ◽  
Author(s):  
Mark D. Sutton ◽  
Mary F. Farrow ◽  
Briana M. Burton ◽  
Graham C. Walker

ABSTRACT The Escherichia coli umuDC gene products encode DNA polymerase V, which participates in both translesion DNA synthesis (TLS) and a DNA damage checkpoint control. These two temporally distinct roles of the umuDC gene products are regulated by RecA–single-stranded DNA-facilitated self-cleavage of UmuD (which participates in the checkpoint control) to yield UmuD′ (which enables TLS). In addition, even modest overexpression of theumuDC gene products leads to a cold-sensitive growth phenotype, apparently due to the inappropriate expression of the DNA damage checkpoint control activity of UmuD2C. We have previously reported that overexpression of the ɛ proofreading subunit of DNA polymerase III suppresses umuDC-mediated cold sensitivity, suggesting that interaction of ɛ with UmuD2C is important for the DNA damage checkpoint control function of theumuDC gene products. Here, we report that overexpression of the β processivity clamp of the E. coli replicative DNA polymerase (encoded by the dnaN gene) not only exacerbates the cold sensitivity conferred by elevated levels of theumuDC gene products but, in addition, confers a severe cold-sensitive phenotype upon a strain expressing moderately elevated levels of the umuD′C gene products. Such a strain is not otherwise normally cold sensitive. To identify mutant β proteins possibly deficient for physical interactions with theumuDC gene products, we selected for noveldnaN alleles unable to confer a cold-sensitive growth phenotype upon a umuD′C-overexpressing strain. In all, we identified 75 dnaN alleles, 62 of which either reduced the expression of β or prematurely truncated its synthesis, while the remaining alleles defined eight unique missense mutations of dnaN. Each of the dnaNmissense mutations retained at least a partial ability to function in chromosomal DNA replication in vivo. In addition, these eightdnaN alleles were also unable to exacerbate the cold sensitivity conferred by modestly elevated levels of theumuDC gene products, suggesting that the interactions between UmuD′ and β are a subset of those between UmuD and β. Taken together, these findings suggest that interaction of β with UmuD2C is important for the DNA damage checkpoint function of the umuDC gene products. Four possible models for how interactions of UmuD2C with the ɛ and the β subunits of DNA polymerase III might help to regulate DNA replication in response to DNA damage are discussed.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Jaylene N. Ollivierre ◽  
Jing Fang ◽  
Penny J. Beuning

All organisms are subject to DNA damage from both endogenous and environmental sources. DNA damage that is not fully repaired can lead to mutations. Mutagenesis is now understood to be an active process, in part facilitated by lower-fidelity DNA polymerases that replicate DNA in an error-prone manner. Y-family DNA polymerases, found throughout all domains of life, are characterized by their lower fidelity on undamaged DNA and their specialized ability to copy damaged DNA. TwoE. coliY-family DNA polymerases are responsible for copying damaged DNA as well as for mutagenesis. These DNA polymerases interact with different forms of UmuD, a dynamic protein that regulates mutagenesis. The UmuD gene products, regulated by the SOS response, exist in two principal forms:UmuD2, which prevents mutagenesis, andUmuD2′, which facilitates UV-induced mutagenesis. This paper focuses on the multiple conformations of the UmuD gene products and how their protein interactions regulate mutagenesis.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6029 ◽  
Author(s):  
Caroline Zutterling ◽  
Aibek Mursalimov ◽  
Ibtissam Talhaoui ◽  
Zhanat Koshenov ◽  
Zhiger Akishev ◽  
...  

Background DNA repair is essential to counteract damage to DNA induced by endo- and exogenous factors, to maintain genome stability. However, challenges to the faithful discrimination between damaged and non-damaged DNA strands do exist, such as mismatched pairs between two regular bases resulting from spontaneous deamination of 5-methylcytosine or DNA polymerase errors during replication. To counteract these mutagenic threats to genome stability, cells evolved the mismatch-specific DNA glycosylases that can recognize and remove regular DNA bases in the mismatched DNA duplexes. The Escherichia coli adenine-DNA glycosylase (MutY/MicA) protects cells against oxidative stress-induced mutagenesis by removing adenine which is mispaired with 7,8-dihydro-8-oxoguanine (8oxoG) in the base excision repair pathway. However, MutY does not discriminate between template and newly synthesized DNA strands. Therefore the ability to remove A from 8oxoG•A mispair, which is generated via misincorporation of an 8-oxo-2′-deoxyguanosine-5′-triphosphate precursor during DNA replication and in which A is the template base, can induce A•T→C•G transversions. Furthermore, it has been demonstrated that human MUTYH, homologous to the bacterial MutY, might be involved in the aberrant processing of ultraviolet (UV) induced DNA damage. Methods Here, we investigated the role of MutY in UV-induced mutagenesis in E. coli. MutY was probed on DNA duplexes containing cyclobutane pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone photoproduct (6–4PP). UV irradiation of E. coli induces Save Our Souls (SOS) response characterized by increased production of DNA repair enzymes and mutagenesis. To study the role of MutY in vivo, the mutation frequencies to rifampicin-resistant (RifR) after UV irradiation of wild type and mutant E. coli strains were measured. Results We demonstrated that MutY does not excise Adenine when it is paired with CPD and 6–4PP adducts in duplex DNA. At the same time, MutY excises Adenine in A•G and A•8oxoG mispairs. Interestingly, E. coli mutY strains, which have elevated spontaneous mutation rate, exhibited low mutational induction after UV exposure as compared to MutY-proficient strains. However, sequence analysis of RifR mutants revealed that the frequencies of C→T transitions dramatically increased after UV irradiation in both MutY-proficient and -deficient E. coli strains. Discussion These findings indicate that the bacterial MutY is not involved in the aberrant DNA repair of UV-induced DNA damage.


Sign in / Sign up

Export Citation Format

Share Document