scholarly journals Functional Characterization by Genetic Complementation of aroB-Encoded Dehydroquinate Synthase from Mycobacterium tuberculosis H37Rv and Its Heterologous Expression and Purification

2007 ◽  
Vol 189 (17) ◽  
pp. 6246-6252 ◽  
Author(s):  
Jordana Dutra de Mendonça ◽  
Fernanda Ely ◽  
Mario Sergio Palma ◽  
Jeverson Frazzon ◽  
Luiz Augusto Basso ◽  
...  

ABSTRACT The recent recrudescence of Mycobacterium tuberculosis infection and the emergence of multidrug-resistant strains have created an urgent need for new therapeutics against tuberculosis. The enzymes of the shikimate pathway are attractive drug targets because this route is absent in mammals and, in M. tuberculosis, it is essential for pathogen viability. This pathway leads to the biosynthesis of aromatic compounds, including aromatic amino acids, and it is found in plants, fungi, bacteria, and apicomplexan parasites. The aroB-encoded enzyme dehydroquinate synthase is the second enzyme of this pathway, and it catalyzes the cyclization of 3-deoxy-d-arabino-heptulosonate-7-phosphate in 3-dehydroquinate. Here we describe the PCR amplification and cloning of the aroB gene and the overexpression and purification of its product, dehydroquinate synthase, to homogeneity. In order to probe where the recombinant dehydroquinate synthase was active, genetic complementation studies were performed. The Escherichia coli AB2847 mutant was used to demonstrate that the plasmid construction was able to repair the mutants, allowing them to grow in minimal medium devoid of aromatic compound supplementation. In addition, homogeneous recombinant M. tuberculosis dehydroquinate synthase was active in the absence of other enzymes, showing that it is homomeric. These results will support the structural studies with M. tuberculosis dehydroquinate synthase that are essential for the rational design of antimycobacterial agents.

2021 ◽  
Author(s):  
Karolina Michalska ◽  
Robert Jedrzejczak ◽  
Jacek Wower ◽  
Changsoo Chang ◽  
Beatriz Baragaña ◽  
...  

Abstract Tuberculosis, caused by Mycobacterium tuberculosis, responsible for ∼1.5 million fatalities in 2018, is the deadliest infectious disease. Global spread of multidrug resistant strains is a public health threat, requiring new treatments. Aminoacyl-tRNA synthetases are plausible candidates as potential drug targets, because they play an essential role in translating the DNA code into protein sequence by attaching a specific amino acid to their cognate tRNAs. We report structures of M. tuberculosis Phe-tRNA synthetase complexed with an unmodified tRNAPhe transcript and either L-Phe or a nonhydrolyzable phenylalanine adenylate analog. High-resolution models reveal details of two modes of tRNA interaction with the enzyme: an initial recognition via indirect readout of anticodon stem-loop and aminoacylation ready state involving interactions of the 3′ end of tRNAPhe with the adenylate site. For the first time, we observe the protein gate controlling access to the active site and detailed geometry of the acyl donor and tRNA acceptor consistent with accepted mechanism. We biochemically validated the inhibitory potency of the adenylate analog and provide the most complete view of the Phe-tRNA synthetase/tRNAPhe system to date. The presented topography of amino adenylate-binding and editing sites at different stages of tRNA binding to the enzyme provide insights for the rational design of anti-tuberculosis drugs.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 607
Author(s):  
Nadeem Ullah ◽  
Ling Hao ◽  
Jo-Lewis Banga Ndzouboukou ◽  
Shiyun Chen ◽  
Yaqi Wu ◽  
...  

Rifampicin (RIF) is one of the most important first-line anti-tuberculosis (TB) drugs, and more than 90% of RIF-resistant (RR) Mycobacterium tuberculosis clinical isolates belong to multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. In order to identify specific candidate target proteins as diagnostic markers or drug targets, differential protein expression between drug-sensitive (DS) and drug-resistant (DR) strains remains to be investigated. In the present study, a label-free, quantitative proteomics technique was performed to compare the proteome of DS, RR, MDR, and XDR clinical strains. We found iniC, Rv2141c, folB, and Rv2561 were up-regulated in both RR and MDR strains, while fadE9, espB, espL, esxK, and Rv3175 were down-regulated in the three DR strains when compared to the DS strain. In addition, lprF, mce2R, mce2B, and Rv2627c were specifically expressed in the three DR strains, and 41 proteins were not detected in the DS strain. Functional category showed that these differentially expressed proteins were mainly involved in the cell wall and cell processes. When compared to the RR strain, Rv2272, smtB, lpqB, icd1, and folK were up-regulated, while esxK, PPE19, Rv1534, rpmI, ureA, tpx, mpt64, frr, Rv3678c, esxB, esxA, and espL were down-regulated in both MDR and XDR strains. Additionally, nrp, PPE3, mntH, Rv1188, Rv1473, nadB, PPE36, and sseA were specifically expressed in both MDR and XDR strains, whereas 292 proteins were not identified when compared to the RR strain. When compared between MDR and XDR strains, 52 proteins were up-regulated, while 45 proteins were down-regulated in the XDR strain. 316 proteins were especially expressed in the XDR strain, while 92 proteins were especially detected in the MDR strain. Protein interaction networks further revealed the mechanism of their involvement in virulence and drug resistance. Therefore, these differentially expressed proteins are of great significance for exploring effective control strategies of DR-TB.


2011 ◽  
Vol 436 (3) ◽  
pp. 729-739 ◽  
Author(s):  
Marcio V. B. Dias ◽  
William C. Snee ◽  
Karen M. Bromfield ◽  
Richard J. Payne ◽  
Satheesh K. Palaninathan ◽  
...  

The shikimate pathway is essential in Mycobacterium tuberculosis and its absence from humans makes the enzymes of this pathway potential drug targets. In the present paper, we provide structural insights into ligand and inhibitor binding to 3-dehydroquinate dehydratase (dehydroquinase) from M. tuberculosis (MtDHQase), the third enzyme of the shikimate pathway. The enzyme has been crystallized in complex with its reaction product, 3-dehydroshikimate, and with six different competitive inhibitors. The inhibitor 2,3-anhydroquinate mimics the flattened enol/enolate reaction intermediate and serves as an anchor molecule for four of the inhibitors investigated. MtDHQase also forms a complex with citrazinic acid, a planar analogue of the reaction product. The structure of MtDHQase in complex with a 2,3-anhydroquinate moiety attached to a biaryl group shows that this group extends to an active-site subpocket inducing significant structural rearrangement. The flexible extensions of inhibitors designed to form π-stacking interactions with the catalytic Tyr24 have been investigated. The high-resolution crystal structures of the MtDHQase complexes provide structural evidence for the role of the loop residues 19–24 in MtDHQase ligand binding and catalytic mechanism and provide a rationale for the design and efficacy of inhibitors.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1259 ◽  
Author(s):  
José E. S. Nunes ◽  
Mario A. Duque ◽  
Talita F. de Freitas ◽  
Luiza Galina ◽  
Luis F. S. M. Timmers ◽  
...  

Roughly a third of the world’s population is estimated to have latent Mycobacterium tuberculosis infection, being at risk of developing active tuberculosis (TB) during their lifetime. Given the inefficacy of prophylactic measures and the increase of drug-resistant M. tuberculosis strains, there is a clear and urgent need for the development of new and more efficient chemotherapeutic agents, with selective toxicity, to be implemented on patient treatment. The component enzymes of the shikimate pathway, which is essential in mycobacteria and absent in humans, stand as attractive and potential targets for the development of new drugs to treat TB. This review gives an update on published work on the enzymes of the shikimate pathway and some insight on what can be potentially explored towards selective drug development.


2010 ◽  
Vol 55 (1) ◽  
pp. 355-360 ◽  
Author(s):  
F. Brossier ◽  
N. Veziris ◽  
C. Truffot-Pernot ◽  
V. Jarlier ◽  
W. Sougakoff

ABSTRACTEthionamide (ETH) needs to be activated by the mono-oxygenase EthA, which is regulated by EthR, in order to be active againstMycobacterium tuberculosis. The activated drug targets the enzyme InhA, which is involved in cell wall biosynthesis. Resistance to ETH has been reported to result from various mechanisms, including mutations altering EthA/EthR, InhA and its promoter, the NADH dehydrogenase encoded byndh, and the MshA enzyme, involved in mycothiol biosynthesis. We searched for such mutations in 87 clinical isolates: 47 ETH-resistant (ETHr) isolates, 24 ETH-susceptible (ETHs) isolates, and 16 isolates susceptible to ETH but displaying an intermediate proportion of resistant cells (ETHSip; defined as ≥1% but <10% resistant cells). In 81% (38/47) of the ETHrisolates, we found mutations inethA,ethR, orinhAor its promoter, which mostly corresponded to new alterations inethAandethR. The 9 ETHrisolates without a mutation in these three genes (9/47, 19%) had no mutation inndh, and a single isolate had a mutation inmshA. Of the 16 ETHSipisolates, 7 had a mutation inethA, 8 had no detectable mutation, and 1 had a mutation inmshA. Finally, of the 24 ETHsisolates, 23 had no mutation in the studied genes and 1 displayed a yet unknown mutation in theinhApromoter. Globally, the mechanism of resistance to ETH remained unknown for 19% of the ETHrisolates, highlighting the complexity of the mechanisms of ETH resistance inM. tuberculosis.


2021 ◽  
Author(s):  
Emmanuel C Ogbonna ◽  
Karl R Schmitz

Tuberculosis is a leading cause of worldwide infectious mortality. The prevalence of multidrug-resistant Mycobacterium tuberculosis (Mtb) infections drives an urgent need to exploit new drug targets. One such target is the ATP-dependent protease ClpC1P1P2, which is strictly essential for viability. However, few proteolytic substrates of mycobacterial ClpC1P1P2 have been identified to date. Recent studies in Bacillus subtilis have shown that the orthologous ClpCP protease recognizes proteolytic substrates bearing post-translational arginine phosphorylation. Several lines of evidence suggest that ClpC1P1P2 similarly recognizes phosphoarginine-bearing proteins, but the existence of phosphoarginine modifications in mycobacteria has remained in question. Here, we confirm the presence of post-translational phosphoarginine modifications in Mycolicibacterium smegmatis (Msm), a nonpathogenic surrogate of Mtb. Using a phosphopeptide enrichment workflow coupled with shotgun phosphoproteomics, we identify arginine phosphosites on a diverse collection of targets within the Msm proteome. Physicochemical and functional characterization of targets suggest that arginine phosphorylation is applied in a sequence-independent manner as part of a proteome-wide quality control pathway. Our findings provide new evidence supporting the existence of phosphoarginine-mediated proteolysis by ClpC1P1P2 in mycobacteria and other actinobacterial species.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Catherine Vilchèze ◽  
Jacqueline Copeland ◽  
Tracy L. Keiser ◽  
Torin Weisbrod ◽  
Jacqueline Washington ◽  
...  

ABSTRACTMultidrug-resistant (MDR) tuberculosis, defined as tuberculosis resistant to the two first-line drugs isoniazid and rifampin, poses a serious problem for global tuberculosis control strategies. Lack of a safe and convenient model organism hampers progress in combating the spread of MDR strains ofMycobacterium tuberculosis. We reasoned that auxotrophic MDR mutants ofM. tuberculosiswould provide a safe means for studying MDRM. tuberculosiswithout the need for a biosafety level 3 (BSL3) laboratory. Two different sets of triple auxotrophic mutants ofM. tuberculosiswere generated, which were auxotrophic for the nutrients leucine, pantothenate, and arginine or for leucine, pantothenate, and methionine. These triple auxotrophic strains retained their acid-fastness, their ability to generate both a drug persistence phenotype and drug-resistant mutants, and their susceptibility to plaque-forming mycobacterial phages. MDR triple auxotrophic mutants were obtained in a two-step fashion, selecting first for solely isoniazid-resistant or rifampin-resistant mutants. Interestingly, selection for isoniazid-resistant mutants of the methionine auxotroph generated isolates with single point mutations inkatG, which encodes an isoniazid-activating enzyme, whereas similar selection using the arginine auxotroph yielded isoniazid-resistant mutants with large deletions in the chromosomal region containingkatG. TheseM. tuberculosisMDR strains were readily sterilized by second-line tuberculosis drugs and failed to kill immunocompromised mice. These strains provide attractive candidates forM. tuberculosisbiology studies and drug screening outside the BSL3 facility.IMPORTANCEElimination ofMycobacterium tuberculosis, the bacterium causing tuberculosis, requires enhanced understanding of its biology in order to identify new drugs against drug-susceptible and drug-resistantM. tuberculosisas well as uncovering novel pathways that lead toM. tuberculosisdeath. To circumvent the need for a biosafety level 3 (BSL3) laboratory when conducting research onM. tuberculosis, we have generated drug-susceptible and drug-resistant triple auxotrophic strains ofM. tuberculosissuitable for use in a BSL2 laboratory. These strains originate from a double auxotrophicM. tuberculosisstrain, H37Rv ΔpanCDΔleuCD, which was reclassified as a BSL2 strain based on its lack of lethality in immunocompromised and immunocompetent mice. A third auxotrophy (methionine or arginine) was introduced via deletion ofmetAorargB, respectively, sinceM. tuberculosisΔmetAandM. tuberculosisΔargBare unable to survive amino acid auxotrophy and infect their host. The resulting triple auxotrophicM. tuberculosisstrains retained characteristics ofM. tuberculosisrelevant for most types of investigations.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaopan Gao ◽  
Xia Yu ◽  
Kaixiang Zhu ◽  
Bo Qin ◽  
Wei Wang ◽  
...  

Mycobacterium tuberculosis (Mtb) caused an estimated 10 million cases of tuberculosis and 1.2 million deaths in 2019 globally. The increasing emergence of multidrug-resistant and extensively drug-resistant Mtb is becoming a public health threat worldwide and makes the identification of anti-Mtb drug targets urgent. Elongation factor G (EF-G) is involved in tRNA translocation on ribosomes during protein translation. Therefore, EF-G is a major focus of structural analysis and a valuable drug target of antibiotics. However, the crystal structure of Mtb EF-G1 is not yet available, and this has limited the design of inhibitors. Here, we report the crystal structure of Mtb EF-G1 in complex with GDP. The unique crystal form of the Mtb EF-G1-GDP complex provides an excellent platform for fragment-based screening using a crystallographic approach. Our findings provide a structure-based explanation for GDP recognition, and facilitate the identification of EF-G1 inhibitors with potential interest in the context of drug discovery.


2011 ◽  
Vol 286 (18) ◽  
pp. 16197-16207 ◽  
Author(s):  
Sebastian Reichau ◽  
Wanting Jiao ◽  
Scott R. Walker ◽  
Richard D. Hutton ◽  
Edward N. Baker ◽  
...  

Tuberculosis remains a serious global health threat, with the emergence of multidrug-resistant strains highlighting the urgent need for novel antituberculosis drugs. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first step of the shikimate pathway for the biosynthesis of aromatic compounds. This pathway has been shown to be essential in Mycobacterium tuberculosis, the pathogen responsible for tuberculosis. DAH7PS catalyzes a condensation reaction between P-enolpyruvate and erythrose 4-phosphate to give 3-deoxy-d-arabino-heptulosonate 7-phosphate. The enzyme reaction mechanism is proposed to include a tetrahedral intermediate, which is formed by attack of an active site water on the central carbon of P-enolpyruvate during the course of the reaction. Molecular modeling of this intermediate into the active site reported in this study shows a configurational preference consistent with water attack from the re face of P-enolpyruvate. Based on this model, we designed and synthesized an inhibitor of DAH7PS that mimics this reaction intermediate. Both enantiomers of this intermediate mimic were potent inhibitors of M. tuberculosis DAH7PS, with inhibitory constants in the nanomolar range. The crystal structure of the DAH7PS-inhibitor complex was solved to 2.35 Å. Both the position of the inhibitor and the conformational changes of active site residues observed in this structure correspond closely to the predictions from the intermediate modeling. This structure also identifies a water molecule that is located in the appropriate position to attack the re face of P-enolpyruvate during the course of the reaction, allowing the catalytic mechanism for this enzyme to be clearly defined.


2017 ◽  
Vol 22 (10) ◽  
pp. 1229-1238 ◽  
Author(s):  
Divakar Sharma ◽  
Deepa Bisht

Tuberculosis still remains one of the most fatal infectious diseases. Streptomycin (SM) is the drug of choice, especially for patients with multidrug-resistant tuberculosis or category II patients, because it targets the protein synthesis machinery by interacting with steps of translation. Several mechanisms have been proposed to explain the resistance, but our knowledge is inadequate. Secretome often plays an important role in pathogenesis and is considered an attractive reservoir for the development of novel diagnostic markers and targets. In this study, we analyze the secretory proteins of streptomycin-resistant Mycobacterium tuberculosis isolates by 2-dimensional gel electrophoresis–matrix assisted laser desorption/ionization–time-of-flight mass spectrometry and bioinformatic tools. Fifteen overexpressed proteins were identified in a resistant isolate that belonged to various categories such as virulence/detoxification/adaptation, intermediary metabolism and respiration, and conserved hypotheticals. Among them, Rv1860, Rv1980c, Rv2140c, Rv1636, and Rv1926c were proteins of an undefined role. Molecular docking of these proteins with SM showed that it binds to their conserved domains and suggests that these might neutralize/compensate the effect of the drug. The interactome also suggests that overexpressed proteins along with their interactive partner might be involved in M. tuberculosis virulence and resistance. The cumulative effect of these overexpressed proteins could involve SM resistance, and these might be used as diagnostic markers or potential drug targets.


Sign in / Sign up

Export Citation Format

Share Document