scholarly journals Genetic Code Ambiguity Confers a Selective Advantage on Acinetobacter baylyi

2007 ◽  
Vol 189 (17) ◽  
pp. 6494-6496 ◽  
Author(s):  
Jamie M. Bacher ◽  
William F. Waas ◽  
David Metzgar ◽  
Valérie de Crécy-Lagard ◽  
Paul Schimmel

ABSTRACT A primitive genetic code, composed of a smaller set of amino acids, may have expanded via recursive periods of genetic code ambiguity that were followed by specificity. Here we model a step in this process by showing how genetic code ambiguity could result in an enhanced growth rate in Acinetobacter baylyi.

2008 ◽  
Vol 105 (46) ◽  
pp. 17688-17693 ◽  
Author(s):  
Chang C. Liu ◽  
Antha V. Mack ◽  
Meng-Lin Tsao ◽  
Jeremy H. Mills ◽  
Hyun Soo Lee ◽  
...  

We have devised a phage display system in which an expanded genetic code is available for directed evolution. This system allows selection to yield proteins containing unnatural amino acids should such sequences functionally outperform ones containing only the 20 canonical amino acids. We have optimized this system for use with several unnatural amino acids and provide a demonstration of its utility through the selection of anti-gp120 antibodies. One such phage-displayed antibody, selected from a naïve germline scFv antibody library in which six residues in VH CDR3 were randomized, contains sulfotyrosine and binds gp120 more effectively than a similarly displayed known sulfated antibody isolated from human serum. These experiments suggest that an expanded “synthetic” genetic code can confer a selective advantage in the directed evolution of proteins with specific properties.


Author(s):  
Daniel L. Dunkelmann ◽  
Sebastian B. Oehm ◽  
Adam T. Beattie ◽  
Jason W. Chin
Keyword(s):  

Amino Acids ◽  
2020 ◽  
Author(s):  
Thomas L. Williams ◽  
Debra J. Iskandar ◽  
Alexander R. Nödling ◽  
Yurong Tan ◽  
Louis Y. P. Luk ◽  
...  

AbstractGenetic code expansion is a powerful technique for site-specific incorporation of an unnatural amino acid into a protein of interest. This technique relies on an orthogonal aminoacyl-tRNA synthetase/tRNA pair and has enabled incorporation of over 100 different unnatural amino acids into ribosomally synthesized proteins in cells. Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA from Methanosarcina species are arguably the most widely used orthogonal pair. Here, we investigated whether beneficial effect in unnatural amino acid incorporation caused by N-terminal mutations in PylRS of one species is transferable to PylRS of another species. It was shown that conserved mutations on the N-terminal domain of MmPylRS improved the unnatural amino acid incorporation efficiency up to five folds. As MbPylRS shares high sequence identity to MmPylRS, and the two homologs are often used interchangeably, we examined incorporation of five unnatural amino acids by four MbPylRS variants at two temperatures. Our results indicate that the beneficial N-terminal mutations in MmPylRS did not improve unnatural amino acid incorporation efficiency by MbPylRS. Knowledge from this work contributes to our understanding of PylRS homologs which are needed to improve the technique of genetic code expansion in the future.


2013 ◽  
Vol 41 (21) ◽  
pp. 9825-9838 ◽  
Author(s):  
Xiao-Long Zhou ◽  
Zhi-Peng Fang ◽  
Zhi-Rong Ruan ◽  
Meng Wang ◽  
Ru-Juan Liu ◽  
...  

1994 ◽  
Vol 168 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Massimo Di Giulio ◽  
M.Rosaria Capobianco ◽  
Mario Medugno
Keyword(s):  

1967 ◽  
Vol 168 (1013) ◽  
pp. 421-438 ◽  

The uptake of thirteen essential amino acids by mouse LS cells in suspension culture was determined by bacteriological assay methods. Chemostat continuous-flow cultures were used to determine the effect of different cell growth rates on the quantitative amino acid requirements for growth. The growth yields of the cells ( Y = g cell dry weight produced/g amino acid utilized) were calculated for each of the essential amino acids. A mixture of the non-essential amino acids, serine, alanine and glycine increased the cell yield from the essential amino acids. The growth yields from nearly all the essential amino acids in batch culture were increased when glutamic acid was substituted for the glutamine in the medium. The growth yields from the amino acids in batch culture were much less at the beginning than at the end of the culture. The highest efficiencies of conversion of amino acids to cell material were obtained by chemostat culture. When glutamic acid largely replaced the glutamine in the medium the conversion of amino acid nitrogen to cell nitrogen was 100 % efficient (that is, the theoretical yield was obtained) at the optimum growth rate (cell doubling time, 43 h). The maximum population density a given amino acid mixture will support can be calculated from the data. It is concluded that in several routinely used tissue culture media the cell growth is limited by the amino acid supply. In batch culture glutamine was wasted by (1) its spontaneous decomposition to pyrrolidone carboxylic acid and ammonia, and (2) its enzymic breakdown to glutamic acid and ammonia, but also glutamine was used less efficiently than glutamic acid. Study of the influence of cell growth rate on amino acid uptake rates per unit mass of cells indicated that a marked change in amino acid metabolism occurred at a specific growth rate of 0.4 day -1 (cell doubling time, 43 h). With decrease in specific growth rate below 0.4 day -1 there was a marked stimulation of amino acid uptake rate per cell and essential amino acids were consumed increasingly for functions other than synthesis of cell material.


Sign in / Sign up

Export Citation Format

Share Document