scholarly journals Going Outside the TonB Box: Identification of Novel FepA-TonB Interactions In Vivo

2017 ◽  
Vol 199 (10) ◽  
Author(s):  
Michael G. Gresock ◽  
Kathleen Postle

ABSTRACT In Gram-negative bacteria, the cytoplasmic membrane protein TonB transmits energy derived from proton motive force to energize transport of important nutrients through TonB-dependent transporters in the outer membrane. Each transporter consists of a beta barrel domain and a lumen-occluding cork domain containing an essential sequence called the TonB box. To date, the only identified site of transporter-TonB interaction is between the TonB box and residues ∼158 to 162 of TonB. While the mechanism of ligand transport is a mystery, a current model based on site-directed spin labeling and molecular dynamics simulations is that, following ligand binding, the otherwise-sequestered TonB box extends into the periplasm for recognition by TonB, which mediates transport by pulling or twisting the cork. In this study, we tested that hypothesis with the outer membrane transporter FepA using in vivo photo-cross-linking to explore interactions of its TonB box and determine whether additional FepA-TonB interaction sites exist. We found numerous specific sites of FepA interaction with TonB on the periplasmic face of the FepA cork in addition to the TonB box. Two residues, T32 and A33, might constitute a ligand-sensitive conformational switch. The facts that some interactions were enhanced in the absence of ligand and that other interactions did not require the TonB box argued against the current model and suggested that the transport process is more complex than originally conceived, with subtleties that might provide a mechanism for discrimination among ligand-loaded transporters. These results constitute the first study on the dynamics of TonB-gated transporter interaction with TonB in vivo. IMPORTANCE The TonB system of Gram-negative bacteria has a noncanonical active transport mechanism involving signal transduction and proteins integral to both membranes. To achieve transport, the cytoplasmic membrane protein TonB physically contacts outer membrane transporters such as FepA. Only one contact between TonB and outer membrane transporters has been identified to date: the TonB box at the transporter amino terminus. The TonB box has low information content, raising the question of how TonB can discriminate among multiple different TonB-dependent transporters present in the bacterium if it is the only means of contact. Here we identified several additional sites through which FepA contacts TonB in vivo, including two neighboring residues that may explain how FepA signals to TonB that ligand has bound.

mBio ◽  
2010 ◽  
Vol 1 (5) ◽  
Author(s):  
Kathleen Postle ◽  
Kyle A. Kastead ◽  
Michael G. Gresock ◽  
Joydeep Ghosh ◽  
Cheryl D. Swayne

ABSTRACTThe TonB system energizes transport of nutrients across the outer membrane ofEscherichia coliusing cytoplasmic membrane proton motive force (PMF) for energy. Integral cytoplasmic membrane proteins ExbB and ExbD appear to harvest PMF and transduce it to TonB. The carboxy terminus of TonB then physically interacts with outer membrane transporters to allow translocation of ligands into the periplasmic space. The structure of the TonB carboxy terminus (residues ~150 to 239) has been solved several times with similar results. Our previous results hinted thatin vitrostructures might not mimic the dimeric conformations that characterize TonBin vivo. To test structural predictions and to identify irreplaceable residues, the entire carboxy terminus of TonB was scanned with Cys substitutions. TonB I232C and N233C, predicted to efficiently form disulfide-linked dimers in the crystal structures, did not do so. In contrast, Cys substitutions positioned at large distances from one another in the crystal structures efficiently formed dimers. Cys scanning identified seven functionally important residues. However, no single residue was irreplaceable. The phenotypes conferred by changes of the seven residues depended on both the specific assay used and the residue substituted. All seven residues were synergistic with one another. The buried nature of the residues in the structures was also inconsistent with these properties. Taken together, these results indicate that the solved dimeric crystal structures of TonB do not exist. The most likely explanation for the aberrant structures is that they were obtained in the absence of the TonB transmembrane domain, ExbB, ExbD, and/or the PMF.IMPORTANCEThe TonB system of Gram-negative bacteria is an attractive target for development of novel antibiotics because of its importance in iron acquisition and virulence. Logically, therefore, the structure of TonB must be accurately understood. TonB functions as a dimerin vivo, and two different but similar crystal structures of the dimeric carboxy-terminal ~90 amino acids gave rise to mechanistic models. Here we demonstrate that the crystal structures, and therefore the models based on them, are not biologically relevant. The idiosyncratic phenotypes conferred by substitutions at the only seven functionally important residues in the carboxy terminus suggest that similar to interaction of cytochromes P450 with numerous substrates, these residues allow TonB to differentially interact with different outer membrane transporters. Taken together, data suggest that TonB is maintained poised between order and disorder by ExbB, ExbD, and the proton motive force (PMF) before energy transduction to the outer membrane transporters.


2020 ◽  
Author(s):  
Dale R. Kopp ◽  
Kathleen Postle

ABSTRACTThe TonB system energizes transport of essential nutrients, such as iron siderophores, across unenergized outer membranes of Gram-negative bacteria. The integral cytoplasmic membrane proteins of the TonB system--ExbB, ExbD, and TonB--transduce the protonmotive force of the cytoplasmic membrane to TonB-dependent outer membrane transporters for active transport. ExbD protein is anchored in the cytoplasmic membrane, with the majority of it occupying the periplasm. We previously identified a conserved motif within a periplasmic disordered domain that is essential for TonB system function. Here we demonstrated that export of a peptide derived from that motif into the periplasm prevented TonB system function and inhibited all known ExbD interactions in vivo. Formaldehyde crosslinking captured the ExbD peptide in multiple ExbD and TonB complexes. Furthermore, peptides with mutations in the conserved motif not only had significantly reduced ability to inhibit TonB system activity, but they also altered interactions with ExbD and TonB, indicating the specificity of the interaction. Conserved motif peptide interactions with ExbD and TonB mostly occurred between Stage II and Stage III of the TonB energy transduction cycle, a transition that is characterized by the use of protonmotive force. Taken together, the data suggest that the ExbD disordered domain motif has multiple interactions with TonB and ExbD during between Stage II and III of the TonB energization cycle. Because of the essentiality of the motif, it may be a potential template for design of novel antibiotics that target the TonB system.IMPORTANCEGram-negative bacteria are intrinsically antibiotic-resistant due to the diffusion barrier posed by their outer membranes. The TonB system allows them to circumvent this barrier for their own nutritional needs, including iron. The ability of bacteria to acquire iron is a virulence factor for many Gram-negative pathogens. However, no antibiotics currently target the TonB system. Because TonB and ExbD must interact productively in the periplasm for transport across the outer membrane, they constitute attractive targets for potential antibiotic development where chemical characteristics need not accommodate the need to cross the hydrophobic cytoplasmic membrane. Here we show that a small ExbD-derived peptide can interfere with the TonB-ExbD interaction to inhibit the TonB system in vivo.


2019 ◽  
Vol 116 (43) ◽  
pp. 21748-21757 ◽  
Author(s):  
Elizabeth M. Hart ◽  
Angela M. Mitchell ◽  
Anna Konovalova ◽  
Marcin Grabowicz ◽  
Jessica Sheng ◽  
...  

The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the β-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamAE470K. BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K. Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.


2005 ◽  
Vol 187 (18) ◽  
pp. 6499-6508 ◽  
Author(s):  
Karsten R. O. Hazlett ◽  
David L. Cox ◽  
Marc Decaffmeyer ◽  
Michael P. Bennett ◽  
Daniel C. Desrosiers ◽  
...  

ABSTRACT The outer membrane of Treponema pallidum, the noncultivable agent of venereal syphilis, contains a paucity of protein(s) which has yet to be definitively identified. In contrast, the outer membranes of gram-negative bacteria contain abundant immunogenic membrane-spanning β-barrel proteins mainly involved in nutrient transport. The absence of orthologs of gram-negative porins and outer membrane nutrient-specific transporters in the T. pallidum genome predicts that nutrient transport across the outer membrane must differ fundamentally in T. pallidum and gram-negative bacteria. Here we describe a T. pallidum outer membrane protein (TP0453) that, in contrast to all integral outer membrane proteins of known structure, lacks extensive β-sheet structure and does not traverse the outer membrane to become surface exposed. TP0453 is a lipoprotein with an amphiphilic polypeptide containing multiple membrane-inserting, amphipathic α-helices. Insertion of the recombinant, nonlipidated protein into artificial membranes results in bilayer destabilization and enhanced permeability. Our findings lead us to hypothesize that TP0453 is a novel type of bacterial outer membrane protein which may render the T. pallidum outer membrane permeable to nutrients while remaining inaccessible to antibody.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
James Lee ◽  
David Tomasek ◽  
Thiago MA Santos ◽  
Mary D May ◽  
Ina Meuskens ◽  
...  

The β-barrel assembly machine (Bam) complex in Gram-negative bacteria and its counterparts in mitochondria and chloroplasts fold and insert outer membrane β-barrel proteins. BamA, an essential component of the complex, is itself a β-barrel and is proposed to play a central role in assembling other barrel substrates. Here, we map the path of substrate insertion by the Bam complex using site-specific crosslinking to understand the molecular mechanisms that control β-barrel folding and release. We find that the C-terminal strand of the substrate is stably held by BamA and that the N-terminal strands of the substrate are assembled inside the BamA β-barrel. Importantly, we identify contacts between the assembling β-sheet and the BamA interior surface that determine the rate of substrate folding. Our results support a model in which the interior wall of BamA acts as a chaperone to catalyze β-barrel assembly.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Uma Gabale ◽  
Perla Arianna Peña Palomino ◽  
HyunAh Kim ◽  
Wenya Chen ◽  
Susanne Ressl

Abstract Recent recurrent outbreaks of Gram-negative bacteria show the critical need to target essential bacterial mechanisms to fight the increase of antibiotic resistance. Pathogenic Gram-negative bacteria have developed several strategies to protect themselves against the host immune response and antibiotics. One such strategy is to remodel the outer membrane where several genes are involved. yejM was discovered as an essential gene in E. coli and S. typhimurium that plays a critical role in their virulence by changing the outer membrane permeability. How the inner membrane protein YejM with its periplasmic domain changes membrane properties remains unknown. Despite overwhelming structural similarity between the periplasmic domains of two YejM homologues with hydrolases like arylsulfatases, no enzymatic activity has been previously reported for YejM. Our studies reveal an intact active site with bound metal ions in the structure of YejM periplasmic domain. Furthermore, we show that YejM has a phosphatase activity that is dependent on the presence of magnesium ions and is linked to its function of regulating outer membrane properties. Understanding the molecular mechanism by which YejM is involved in outer membrane remodeling will help to identify a new drug target in the fight against the increased antibiotic resistance.


2010 ◽  
Vol 54 (9) ◽  
pp. 3708-3713 ◽  
Author(s):  
Raquel F. Epand ◽  
Jake E. Pollard ◽  
Jonathan O. Wright ◽  
Paul B. Savage ◽  
Richard M. Epand

ABSTRACT Ceragenins are cholic acid-derived antimicrobial agents that mimic the activity of endogenous antimicrobial peptides. Ceragenins target bacterial membranes, yet the consequences of these interactions have not been fully elucidated. The role of the outer membrane in allowing access of the ceragenins to the cytoplasmic membrane of Gram-negative bacteria was studied using the ML-35p mutant strain of Escherichia coli that has been engineered to allow independent monitoring of small-molecule flux across the inner and outer membranes. The ceragenins CSA-8, CSA-13, and CSA-54 permeabilize the outer membrane of this bacterium, suggesting that the outer membrane does not play a major role in preventing the access of these agents to the cytoplasmic membrane. However, only the most potent of these ceragenins, CSA-13, was able to permeabilize the inner membrane. Interestingly, neither CSA-8 nor CSA-54 caused inner membrane permeabilization over a 30-min period, even at concentrations well above those required for bacterial toxicity. To further assess the role of membrane interactions, we measured membrane depolarization in Gram-positive bacteria with different membrane lipid compositions, as well as in Gram-negative bacteria. We found greatly increased membrane depolarization at the minimal bactericidal concentration of the ceragenins for bacterial species containing a high concentration of phosphatidylethanolamine or uncharged lipids in their cytoplasmic membranes. Although membrane lipid composition affected bactericidal efficiency, membrane depolarization was sufficient to cause lethality, providing that agents could access the cytoplasmic membrane. Consequently, we propose that in targeting bacterial cytoplasmic membranes, focus be placed on membrane depolarization as an indicator of potency.


Sign in / Sign up

Export Citation Format

Share Document