scholarly journals Evolution and Functional Characterization of the RH50 Gene from the Ammonia-Oxidizing Bacterium Nitrosomonas europaea

2007 ◽  
Vol 189 (24) ◽  
pp. 9090-9100 ◽  
Author(s):  
Baya Cherif-Zahar ◽  
Anne Durand ◽  
Ingo Schmidt ◽  
Nabila Hamdaoui ◽  
Ivan Matic ◽  
...  

ABSTRACT The family of ammonia and ammonium channel proteins comprises the Amt proteins, which are present in all three domains of life with the notable exception of vertebrates, and the homologous Rh proteins (Rh50 and Rh30) that have been described thus far only in eukaryotes. The existence of an RH50 gene in bacteria was first revealed by the genome sequencing of the ammonia-oxidizing bacterium Nitrosomonas europaea. Here we have used a phylogenetic approach to study the evolution of the N. europaea RH50 gene, and we show that this gene, probably as a component of an integron cassette, has been transferred to the N. europaea genome by horizontal gene transfer. In addition, by functionally characterizing the Rh50 Ne protein and the corresponding knockout mutant, we determined that NeRh50 can mediate ammonium uptake. The RH50Ne gene may thus have replaced functionally the AMT gene, which is missing in the genome of N. europaea and may be regarded as a case of nonorthologous gene displacement.

2005 ◽  
Vol 289 (5) ◽  
pp. C1159-C1168 ◽  
Author(s):  
Naomi Oshiro ◽  
Ana M. Pajor

The SLC13 gene family includes sodium-coupled transporters for citric acid cycle intermediates and sulfate. The present study describes the sequence and functional characterization of a SLC13 family member from Xenopus laevis, the high-affinity Na+/dicarboxylate cotransporter xNaDC-3. The cDNA sequence of xNaDC-3 codes for a protein of 602 amino acids that is ∼70% identical to the sequences of mammalian NaDC-3 orthologs. The message for xNaDC-3 is found in the kidney, liver, intestine, and heart. The xNaDC-3 has a high affinity for substrate, including a Km for succinate of 4 μM, and it is inhibited by the NaDC-3 test substrates 2,3-dimethylsuccinate and adipate. The transport of succinate by xNaDC-3 is dependent on sodium, with sigmoidal activation kinetics, and lithium can partially substitute for sodium. As with other members of the family, xNaDC-3 is electrogenic and exhibits inward substrate-dependent currents in the presence of sodium. However, other electrophysiological properties of xNaDC-3 are unique and involve large leak currents, possibly mediated by anions, that are activated by binding of sodium or lithium to a single site.


2007 ◽  
Vol 189 (22) ◽  
pp. 8088-8098 ◽  
Author(s):  
Amirreza Faridmoayer ◽  
Messele A. Fentabil ◽  
Dominic C. Mills ◽  
John S. Klassen ◽  
Mario F. Feldman

ABSTRACT Protein glycosylation is an important posttranslational modification that occurs in all domains of life. Pilins, the structural components of type IV pili, are O glycosylated in Neisseria meningitidis, Neisseria gonorrhoeae, and some strains of Pseudomonas aeruginosa. In this work, we characterized the P. aeruginosa 1244 and N. meningitidis MC58 O glycosylation systems in Escherichia coli. In both cases, sugars are transferred en bloc by an oligosaccharyltransferase (OTase) named PglL in N. meningitidis and PilO in P. aeruginosa. We show that, like PilO, PglL has relaxed glycan specificity. Both OTases are sufficient for glycosylation, but they require translocation of the undecaprenol-pyrophosphate-linked oligosaccharide substrates into the periplasm for activity. Whereas PilO activity is restricted to short oligosaccharides, PglL is able to transfer diverse oligo- and polysaccharides. This functional characterization supports the concept that despite their low sequence similarity, PilO and PglL belong to a new family of “O-OTases” that transfer oligosaccharides from lipid carriers to hydroxylated amino acids in proteins. To date, such activity has not been identified for eukaryotes. To our knowledge, this is the first report describing recombinant O glycoproteins synthesized in E. coli.


Peptides ◽  
2015 ◽  
Vol 74 ◽  
pp. 23-32 ◽  
Author(s):  
Tewodros Firdissa Duressa ◽  
Kurt Boonen ◽  
Yoichi Hayakawa ◽  
Roger Huybrechts

2019 ◽  
Vol 26 (15) ◽  
pp. 2609-2633 ◽  
Author(s):  
Linda Cerofolini ◽  
Marco Fragai ◽  
Claudio Luchinat

Matrix metalloproteinases hydrolyze proteins and glycoproteins forming the extracellular matrix, cytokines and growth factors released in the extracellular space, and membrane-bound receptors on the outer cell membrane. The pathological relevance of MMPs has prompted the structural and functional characterization of these enzymes and the development of synthetic inhibitors as possible drug candidates. Recent studies have provided a better understanding of the substrate preference of the different members of the family, and structural data on the mechanism by which these enzymes hydrolyze the substrates. Here, we report the recent advancements in the understanding of the mechanism of collagenolysis and elastolysis, and we discuss the perspectives of new therapeutic strategies for targeting MMPs.


2008 ◽  
Vol 105 (46) ◽  
pp. 17730-17735 ◽  
Author(s):  
Boguslaw Nocek ◽  
Samvel Kochinyan ◽  
Michael Proudfoot ◽  
Greg Brown ◽  
Elena Evdokimova ◽  
...  

Inorganic polyphosphate (polyP) is a linear polymer of tens or hundreds of phosphate residues linked by high-energy bonds. It is found in all organisms and has been proposed to serve as an energy source in a pre-ATP world. This ubiquitous and abundant biopolymer plays numerous and vital roles in metabolism and regulation in prokaryotes and eukaryotes, but the underlying molecular mechanisms for most activities of polyP remain unknown. In prokaryotes, the synthesis and utilization of polyP are catalyzed by 2 families of polyP kinases, PPK1 and PPK2, and polyphosphatases. Here, we present structural and functional characterization of the PPK2 family. Proteins with a single PPK2 domain catalyze polyP-dependent phosphorylation of ADP to ATP, whereas proteins containing 2 fused PPK2 domains phosphorylate AMP to ADP. Crystal structures of 2 representative proteins, SMc02148 from Sinorhizobium meliloti and PA3455 from Pseudomonas aeruginosa, revealed a 3-layer α/β/α sandwich fold with an α-helical lid similar to the structures of microbial thymidylate kinases, suggesting that these proteins share a common evolutionary origin and catalytic mechanism. Alanine replacement mutagenesis identified 9 conserved residues, which are required for activity and include the residues from both Walker A and B motifs and the lid. Thus, the PPK2s represent a molecular mechanism, which potentially allow bacteria to use polyP as an intracellular energy reserve for the generation of ATP and survival.


1999 ◽  
Vol 181 (20) ◽  
pp. 6387-6395 ◽  
Author(s):  
S. Schubert ◽  
D. Fischer ◽  
J. Heesemann

ABSTRACT Yersinia enterocolitica is well equipped for siderophore piracy, encompassing the utilization of siderophores such as ferrioxamine, ferrichrome, and ferrienterochelin. In this study, we report on the molecular and functional characterization of theYersinia fep-fes gene cluster orthologous to theEscherichia coli ferrienterochelin transport genes (fepA, fepDGC, and fepB) and the esterase gene fes. In vitro transcription-translation analysis identified polypeptides of 30 and 35 kDa encoded byfepC and fes, respectively. A frameshift mutation within the fepA gene led to expression of a truncated polypeptide of 40 kDa. The fepD,fepG, and fes genes of Y. enterocolitica were shown to complement corresponding E. coli mutants. Insertional mutagenesis of fepD orfes genes abrogates enterochelin-supported growth ofY. enterocolitica on iron-chelated media. In contrast toE. coli, the fep-fes gene cluster inY. enterocolitica consists solely of genes required for uptake and utilization of enterochelin (fep) and not of enterochelin synthesis genes such as entF. By Southern hybridization, fepDGC and fes sequences could be detected in Y. enterocolitica biotypes IB, IA, and II but not in biotype IV strains, Yersinia pestis, andYersinia pseudotuberculosis strains. According to sequence alignment data and the coherent structure of the Yersinia fep-fes gene cluster, we suggest early genetic divergence of ferrienterochelin uptake determinants among species of the familyEnterobacteriaceae.


Microbiology ◽  
2020 ◽  
Vol 166 (12) ◽  
pp. 1181-1190
Author(s):  
Pooja Murarka ◽  
Aditi Keshav ◽  
Bintu Kumar Meena ◽  
Preeti Srivastava

WhiB is a transcription regulator which has been reported to be involved in the regulation of cell morphogenesis, cell division, antibiotic resistance, stress, etc., in several members of the family Actinomycetes . The present study describes functional characterization of a WhiB family protein, WhiB1 (protein ID: WP_065632651.1), from Gordonia sp. IITR100. We demonstrate that WhiB1 affects chromosome segregation and cell morphology in recombinant Escherichia coli , Gordonia sp. IITR100 as well as in Rhodococcus erythropolis . Multiple sequence alignment suggests that WhiB1 is a conserved protein among members of the family Actinomycetes . It has been reported that overexpression of WhiB1 leads to repression of the biodesulfurization operon in recombinant E. coli , Gordonia sp. IITR100 and R. erythropolis . A WhiB1-mut containing a point mutation Q116A in the DNA binding domain of WhiB1 led to partial alleviation of repression of the biodesulfurization operon. We show for the first time that the WhiB family protein WhiB1 is also involved in repression of the biodesulfurization operon by directly binding to the dsz promoter DNA.


2019 ◽  
Vol 60 (7) ◽  
pp. 1595-1603 ◽  
Author(s):  
Jung Yeon Han ◽  
Hye-Jeong Jo ◽  
Eun Kyung Kwon ◽  
Yong Eui Choi

Abstract Triterpenes, consisting of six isoprene units, are one of the largest classes of natural compounds in plants. The genus Taraxacum is in the family Asteraceae and is widely distributed in the Northern Hemisphere. Various triterpenes, especially taraxerol and taraxasterol, are present in Taraxacum plants. Triterpene biosynthesis occurs through the action of oxidosqualene cyclase (OSC), which generates various types of triterpenes from 2,3-oxidosqualene after the rearrangement of the triterpene skeleton. However, no functional characterization of the OSC genes involved in triterpene biosynthesis, except for a lupeol synthase in Taraxacum officinale, has been performed. Taraxacum coreanum, or Korean dandelion, grows in Korea and China. Putative OSC genes in T. coreanum plants were isolated by transcriptome analysis, and four of these (TcOSC1, TcOSC2, TcOSC3 and TcOSC4) were functionally characterized by heterologous expression in yeast. Both TcOSC1 and TcOSC2 were closely related to dammarenediol-II synthases. TcOSC3 and TcOSC4 were strongly grouped with β-amyrin synthases. Functional analysis revealed that TcOSC1 produced several triterpenes, including taraxasterol; Ψ-taraxasterol; α-, β- and δ-amyrin; and dammarenediol-II. TcOSC2 catalyzed the production of bauerenol and another unknown triterpene, TcOSC3 catalyzed the production of β-amyrin. TcOSC4 catalyzed the production of taraxerol. Moreover, we identified taraxasterol, ψ-taraxasterol, taraxerol, lupeol, δ-amyrin, α-amyrin, β-amyrin and bauerenol in the roots and leaves of T. coreanum. Our results suggest that TcOSC1, TcOSC2, TcOSC3 and TcOSC4 are key triterpene biosynthetic enzymes in T. coreanum. These enzymes are novel triterpene synthases involved in the production of taraxasterol, bauerenol and taraxerol.


2021 ◽  
Author(s):  
Christian H. Ahrens ◽  
Joseph T. Wade ◽  
Matthew M. Champion ◽  
Julian D. Langer

Small proteins of up to ∼50 amino acids are an abundant class of biomolecules across all domains of life. Yet, due to the challenges inherent in their size, they are often missed in genome annotations, and are difficult to identify and characterize using standard experimental approaches. Consequently, we still know few small proteins even in well-studied prokaryotic model organisms. Mass spectrometry (MS) has great potential for the discovery, validation, and functional characterization of small proteins. However, standard MS approaches are poorly suited to the identification of both known and novel small proteins due to limitations at each step of a typical proteomics workflow, i.e., sample preparation, protease digestion, liquid chromatography, MS data acquisition, and data analysis. Here, we outline the major MS-based workflows and bioinformatic pipelines used for small protein discovery and validation. Special emphasis is placed on highlighting the adjustments required to improve detection and data quality for small proteins. We discuss both the unbiased detection of small proteins and the targeted analysis of small proteins of interest. Finally, we provide guidelines to prioritize novel small proteins, and an outlook on methods with particular potential to further improve comprehensive discovery and characterization of small proteins. IMPORTANCE Small proteins of up to ∼50 amino acids play important physiological roles across all domains of life. Mass spectrometry is an ideal approach to detect and characterize small proteins, but many aspects of standard mass spectrometry workflows are biased against small proteins due to their size. Here, we highlight applications of mass spectrometry to study small proteins, emphasizing modifications to standard workflows to optimize the detection of small proteins.


Sign in / Sign up

Export Citation Format

Share Document