scholarly journals Functional Characterization of Bacterial Oligosaccharyltransferases Involved in O-Linked Protein Glycosylation

2007 ◽  
Vol 189 (22) ◽  
pp. 8088-8098 ◽  
Author(s):  
Amirreza Faridmoayer ◽  
Messele A. Fentabil ◽  
Dominic C. Mills ◽  
John S. Klassen ◽  
Mario F. Feldman

ABSTRACT Protein glycosylation is an important posttranslational modification that occurs in all domains of life. Pilins, the structural components of type IV pili, are O glycosylated in Neisseria meningitidis, Neisseria gonorrhoeae, and some strains of Pseudomonas aeruginosa. In this work, we characterized the P. aeruginosa 1244 and N. meningitidis MC58 O glycosylation systems in Escherichia coli. In both cases, sugars are transferred en bloc by an oligosaccharyltransferase (OTase) named PglL in N. meningitidis and PilO in P. aeruginosa. We show that, like PilO, PglL has relaxed glycan specificity. Both OTases are sufficient for glycosylation, but they require translocation of the undecaprenol-pyrophosphate-linked oligosaccharide substrates into the periplasm for activity. Whereas PilO activity is restricted to short oligosaccharides, PglL is able to transfer diverse oligo- and polysaccharides. This functional characterization supports the concept that despite their low sequence similarity, PilO and PglL belong to a new family of “O-OTases” that transfer oligosaccharides from lipid carriers to hydroxylated amino acids in proteins. To date, such activity has not been identified for eukaryotes. To our knowledge, this is the first report describing recombinant O glycoproteins synthesized in E. coli.

Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masuzu Kikuchi ◽  
Keiichi Kojima ◽  
Shin Nakao ◽  
Susumu Yoshizawa ◽  
Shiho Kawanishi ◽  
...  

AbstractMicrobial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons outwardly across the membrane and are indispensable for light-energy conversion in microorganisms. Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli expression system because that enables the rapid production of large amounts of recombinant proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (O. marina rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated counterion (pKa = 3.0) of the protonated Schiff base and (3) a rapid photocycle through several distinct photointermediates. Those features are similar to those of known eukaryotic proton pump rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for understanding and utilizing eukaryotic rhodopsins.


Author(s):  
I. B. Trindade ◽  
G. Hernandez ◽  
E. Lebègue ◽  
F. Barrière ◽  
T. Cordeiro ◽  
...  

AbstractIron is a fundamental element for virtually all forms of life. Despite its abundance, its bioavailability is limited, and thus, microbes developed siderophores, small molecules, which are synthesized inside the cell and then released outside for iron scavenging. Once inside the cell, iron removal does not occur spontaneously, instead this process is mediated by siderophore-interacting proteins (SIP) and/or by ferric-siderophore reductases (FSR). In the past two decades, representatives of the SIP subfamily have been structurally and biochemically characterized; however, the same was not achieved for the FSR subfamily. Here, we initiate the structural and functional characterization of FhuF, the first and only FSR ever isolated. FhuF is a globular monomeric protein mainly composed by α-helices sheltering internal cavities in a fold resembling the “palm” domain found in siderophore biosynthetic enzymes. Paramagnetic NMR spectroscopy revealed that the core of the cluster has electronic properties in line with those of previously characterized 2Fe–2S ferredoxins and differences appear to be confined to the coordination of Fe(III) in the reduced protein. In particular, the two cysteines coordinating this iron appear to have substantially different bond strengths. In similarity with the proteins from the SIP subfamily, FhuF binds both the iron-loaded and the apo forms of ferrichrome in the micromolar range and cyclic voltammetry reveals the presence of redox-Bohr effect, which broadens the range of ferric-siderophore substrates that can be thermodynamically accessible for reduction. This study suggests that despite the structural differences between FSR and SIP proteins, mechanistic similarities exist between the two classes of proteins. Graphic abstract


2013 ◽  
Vol 144 (5) ◽  
pp. S-310
Author(s):  
Brendan Chandler ◽  
Belgin Dogan ◽  
Ellen J. Scherl ◽  
Kenneth W. Simpson

2021 ◽  
Author(s):  
Cristina Hernandez Rollan ◽  
Kristoffer Bach Falkenberg ◽  
Maja Rennig ◽  
Andreas Birk Bertelsen ◽  
Morten Norholm

E. coli is a gram-negative bacteria used mainly in academia and in some industrial scenarios, as a protein production workhorse. This is due to its ease of manipulation and the range of genetic tools available. This protocol describes how to express proteins in the periplasm E. coli with the strain BL21 (DE3) using a T7 expression system. Specifically, it describes a series of steps and tips to express "hard-to-express" proteins in E. coli, as for instance, LPMOs. The protocol is adapted from Hemsworth, G. R., Henrissat, B., Davies, G. J., and Walton, P. H. (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat. Chem. Biol.10, 122–126. .


2022 ◽  
Vol 7 (1) ◽  
pp. 474-480
Author(s):  
Yating Mo ◽  
Hou Ip Lao ◽  
Sau Wa Au ◽  
Ieng Chon Li ◽  
Jeremy Hu ◽  
...  

2006 ◽  
Vol 26 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Si Sun ◽  
Jo Han Gan ◽  
Jennifer J. Paynter ◽  
Stephen J. Tucker

Our understanding of the mammalian inwardly rectifying family of K+ channels (Kir family) has recently been advanced by X-ray crystal structures of two homologous prokaryotic orthologs (KirBac1.1 and KirBac3.1). However, the functional properties of these KirBac channels are still poorly understood. To address this problem, we cloned and characterized genes encoding KirBac orthologs from a wide variety of different prokaryotes and a simple unicellular eukaryote. The functional properties of these KirBacs were then examined by growth complementation in a K+ uptake-deficient strain of Escherichia coli (TK2420). Whereas some KirBac genes exhibited robust growth complementation, others either did not complement or showed temperature-dependent complementation including KirBac1.1 and KirBac3.1. In some cases, KirBac expression was also toxic to the growth of E. coli. The KirBac family exhibited a range of sensitivity to the K+ channel blockers Ba2+ and Cs+ as well as differences in their ability to grow on very low-K+ media, thus demonstrating major differences in their permeation properties. These results reveal the existence of a functionally diverse superfamily of microbial KirBac genes and present an excellent resource for the structural and functional analysis of this class of K+ channels. Furthermore, the complementation assay used in this study provides a simple and robust method for the functional characterization of a range of prokaryotic K+ channels that are difficult to study by traditional methods.


1998 ◽  
Vol 44 (1) ◽  
pp. 91-94
Author(s):  
G Scott Jenkins ◽  
Mark S Chandler ◽  
Pamela S Fink

The putative 4.5S RNA of Haemophilus influenzae was identified in the genome by computer analysis, amplified by the polymerase chain reaction, and cloned. We have determined that this putative 4.5S RNA will complement an Escherichia coli strain conditionally defective in 4.5S RNA production. The predicted secondary structures of the molecules were quite similar, but Northern analysis showed that the H. influenzae RNA was slightly larger than the E. coli RNA. The H. influenzae gene encoding this RNA is the functional homolog of the ffs gene in E. coli. Key words: ffs gene, complementation studies, small RNA, prokaryotic genetics.


2000 ◽  
Vol 279 (3) ◽  
pp. F482-F490 ◽  
Author(s):  
Ana M. Pajor ◽  
Nina N. Sun

The sodium-dicarboxylate cotransporter of the renal proximal tubule, NaDC-1, reabsorbs filtered Krebs cycle intermediates and plays an important role in the regulation of urinary citrate concentrations.1 Low urinary citrate is a risk factor for the development of kidney stones. As an initial step in the characterization of NaDC-1 regulation, the genomic structure and functional properties of the mouse Na+-dicarboxylate cotransporter (mNaDC-1) were determined. The gene coding for mNaDC-1, Slc13a2, is found on chromosome 11. The gene is ∼24.9 kb in length and contains 12 exons. The mRNA coding for mNaDC-1 is found in kidney and small intestine. Expression of mNaDC-1 in Xenopus laevis oocytes results in increased transport of di- and tricarboxylates. The Michaelis-Menten constant ( K m) for succinate was 0.35 mM, and the K m for citrate was 0.6 mM. The transport of citrate was stimulated by acidic pH, whereas the transport of succinate was insensitive to pH changes. Transport by mNaDC-1 is electrogenic, and substrates produced inward currents in the presence of sodium. The sodium affinity was relatively high in mNaDC-1, with half-saturation constants for sodium of 10 mM (radiotracer experiments) and 28 mM at −50 mV (2-electrode voltage clamp experiments). Lithium acts as a potent inhibitor of transport, but it can also partially substitute for sodium. In conclusion, the mNaDC-1 is related in sequence and function to the other NaDC-1 orthologs. However, its function more closely resembles the rabbit and human orthologs rather than the rat NaDC-1, with which it shares higher sequence similarity.


2020 ◽  
Vol 71 (9) ◽  
pp. 2796-2807 ◽  
Author(s):  
Carmen Escudero-Martinez ◽  
Patricia A Rodriguez ◽  
Shan Liu ◽  
Pablo A Santos ◽  
Jennifer Stephens ◽  
...  

Abstract Aphids secrete diverse repertoires of effectors into their hosts to promote the infestation process. While ‘omics’ approaches facilitated the identification and comparison of effector repertoires from a number of aphid species, the functional characterization of these proteins has been limited to dicot (model) plants. The bird cherry-oat aphid Rhopalosiphum padi is a pest of cereal crops, including barley. Here, we extend efforts to characterize aphid effectors with regard to their role in promoting susceptibility to the R. padi–barley interaction. We selected three R. padi effectors based on sequence similarity to previously characterized Myzus persicae effectors and assessed their subcellular localization, expression, and role in promoting plant susceptibility. Expression of R. padi effectors RpC002 and Rp1 in transgenic barley lines enhanced plant susceptibility to R. padi but not M. persicae, for which barley is a poor host. Characterization of Rp1 transgenic barley lines revealed reduced gene expression of plant hormone signalling genes relevant to plant–aphid interactions, indicating that this effector enhances susceptibility by suppressing plant defences in barley. Our data suggest that some aphid effectors specifically function when expressed in host species, and feature activities that benefit their corresponding aphid species.


Sign in / Sign up

Export Citation Format

Share Document