scholarly journals Reduction of Turgor Is Not the Stimulus for the Sensor Kinase KdpD of Escherichia coli

2008 ◽  
Vol 190 (7) ◽  
pp. 2360-2367 ◽  
Author(s):  
Knut Hamann ◽  
Petra Zimmann ◽  
Karlheinz Altendorf

ABSTRACT Stimulus perception by the KdpD/KdpE two-component system of Escherichia coli is still controversial with respect to the nature of the stimulus that is perceived by the sensor kinase KdpD. Limiting potassium concentrations in the medium or high osmolality leads to KdpD/KdpE signal transduction, resulting in kdpFABC expression. It has been hypothesized that changes in turgor are sensed by KdpD through alterations in the physical state of the cytoplasmic membrane. However, in this study the quantitative determination of expression levels of the kdpFABC operon revealed that the system responds very effectively to K+-limiting conditions in the medium but barely and to various degrees to salt and sugar stress. Since the current view of stimulus perception calls for mainly intracellular parameters, which might be sensed by KdpD, we set out to test the cytoplasmic concentrations of ATP, K+, Na+, glutamate, proline, glycine, trehalose, putrescine, and spermidine under K+-limiting conditions. As a first result, the determination of the cytoplasmic volume, which is a prerequisite for such measurements, revealed that a transient shrinkage of the cytoplasmic volume, which is indicative of a reduction in turgor, occurred only under osmotic upshift but not under K+-limiting conditions. Furthermore, the intracellular ATP concentration significantly increased under osmotic upshift, whereas only a slight increase occurred after a potassium downshift. Finally, the cytoplasmic K+ concentration rose severalfold only after an osmotic upshock. For the first time, these data indicate that stimulus perception by KdpD correlates neither with changes in the cytoplasmic volume nor with changes in the intracellular ATP or K+ concentration or those of the other solutes tested. In conclusion, we propose that a reduction in turgor cannot be the stimulus for KdpD.

PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115534 ◽  
Author(s):  
Patrick D. Scheu ◽  
Philipp A. Steinmetz ◽  
Felix Dempwolff ◽  
Peter L. Graumann ◽  
Gottfried Unden

2006 ◽  
Vol 34 (1) ◽  
pp. 104-107 ◽  
Author(s):  
T.W. Overton ◽  
L. Griffiths ◽  
M.D. Patel ◽  
J.L. Hobman ◽  
C.W. Penn ◽  
...  

RNA was isolated from cultures of Escherichia coli strain MG1655 and derivatives defective in fnr, narXL, or narXL with narP, during aerobic growth, or anaerobic growth in the presence or absence of nitrate or nitrite, in non-repressing media in which both strain MG1655 and an fnr deletion mutant grew at similar rates. Glycerol was used as the non-repressing carbon source and both trimethylamine-N-oxide and fumarate were added as terminal electron acceptors. Microarray data supplemented with bioinformatic data revealed that the FNR (fumarate and nitrate reductase regulator) regulon includes at least 104, and possibly as many as 115, operons, 68 of which are activated and 36 are repressed during anaerobic growth. A total of 51 operons were directly or indirectly activated by NarL in response to nitrate; a further 41 operons were repressed. Four subgroups of genes implicated in management of reactive nitrogen compounds, NO and products of NO metabolism, were identified; they included proteins of previously unknown function. Global repression by the nitrate- and nitrite-responsive two-component system, NarQ-NarP, was shown for the first time. In contrast with the frdABCD, aspA and ansB operons that are repressed only by NarL, the dcuB-fumB operon was among 37 operons that are repressed by NarP.


2006 ◽  
Vol 188 (23) ◽  
pp. 8303-8306 ◽  
Author(s):  
Verónica Mondragón ◽  
Bernardo Franco ◽  
Kristina Jonas ◽  
Kazushi Suzuki ◽  
Tony Romeo ◽  
...  

ABSTRACT The barA and uvrY genes of Escherichia coli encode a two-component sensor kinase and a response regulator, respectively. Although this system plays a major role in the regulation of central carbon metabolism, motility, and biofilm formation by controlling the expression of the CsrB and CsrC noncoding RNAs, the environmental conditions and the physiological signal(s) to which it responds remain obscure. In this study, we explored the effect of external pH on the activity of BarA/UvrY. Our results indicate that a pH lower than 5.5 provides an environment that does not allow activation of the BarA/UvrY signaling pathway.


2010 ◽  
Vol 192 (6) ◽  
pp. 1735-1739 ◽  
Author(s):  
Gabriela R. Peña-Sandoval ◽  
Dimitris Georgellis

ABSTRACT The Arc two-component system, comprising the ArcB sensor kinase and the ArcA response regulator, modulates the expression of numerous genes in response to the respiratory conditions of growth. ArcB is a tripartite histidine kinase whose activity is regulated by the oxidation of two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here we show that ArcB autophosphorylates through an intramolecular reaction which diverges from the usually envisaged intermolecular autophosphorylation of homodimeric histidine kinases.


2021 ◽  
Author(s):  
Sara El Hajj ◽  
Camille Henry ◽  
Camille Andrieu ◽  
Alexandra Vergnes ◽  
Laurent Loiseau ◽  
...  

Two-component systems (TCS) are signalling pathways that allow bacterial cells to sense, respond and adapt to fluctuating environments. Among the classical TCS of Escherichia coli , HprSR has recently been shown to be involved in the regulation of msrPQ , which encodes the periplasmic methionine sulfoxide reductase system. In this study, we demonstrate that hypochlorous acid (HOCl) induces the expression of msrPQ in an HprSR-dependant manner, whereas H 2 O 2 , NO and paraquat (a superoxide generator) do not. Therefore, HprS appears to be an HOCl-sensing histidine kinase. Using a directed mutagenesis approach, we show that Met residues located in the periplasmic loop of HprS are important for its activity: as HOCl preferentially oxidizes Met residues, we provide evidence that HprS could be activated via the reversible oxidation of its methionine residues, meaning that MsrPQ plays a role in switching HprSR off. We propose that the activation of HprS by HOCl could occur through a Met redox switch. HprSR appears to be the first characterized TCS able to detect reactive chlorine species (RCS) in E. coli . This study represents an important step towards understanding the mechanisms of RCS resistance in prokaryotes. IMPORTANCE Understanding how bacteria respond to oxidative stress at the molecular level is crucial in the fight against pathogens. HOCl is one of the most potent industrial and physiological microbiocidal oxidants. Therefore bacteria have developed counterstrategies to survive HOCl-induced stress. Over the last decade, important insights into these bacterial protection factors have been obtained. Our work establishes HprSR as a reactive chlorine species-sensing, two-component system in Escherichia coli MG1655, which regulates the expression of MsrPQ, a repair system for HOCl-oxidized proteins. Moreover we provide evidence suggesting that HOCl could activate HprS through a methionine redox switch.


Amino Acids ◽  
2011 ◽  
Vol 43 (2) ◽  
pp. 833-844 ◽  
Author(s):  
Marina C. Theodorou ◽  
Evaggelos C. Theodorou ◽  
Dimitrios A. Kyriakidis

Microbiology ◽  
2009 ◽  
Vol 155 (2) ◽  
pp. 398-412 ◽  
Author(s):  
Kassem Hamze ◽  
Daria Julkowska ◽  
Sabine Autret ◽  
Krzysztof Hinc ◽  
Krzysztofa Nagorska ◽  
...  

Highly branched dendritic swarming of B. subtilis on synthetic B-medium involves a developmental-like process that is absolutely dependent on flagella and surfactin secretion. In order to identify new swarming genes, we targeted the two-component ComPA signalling pathway and associated global regulators. In liquid cultures, the histidine kinase ComP, and the response regulator ComA, respond to secreted pheromones ComX and CSF (encoded by phrC) in order to control production of surfactin synthases and ComS (competence regulator). In this study, for what is believed to be the first time, we established that distinct early stages of dendritic swarming can be clearly defined, and that they are amenable to genetic analysis. In a mutational analysis producing several mutants with distinctive phenotypes, we were able to assign the genes sfp (activation of surfactin synthases), comA, abrB and codY (global regulators), hag (flagellin), mecA and yvzB (hag-like), and swrB (motility), to the different swarming stages. Surprisingly, mutations in genes comPX, comQ, comS, rapC and oppD, which are normally indispensable for import of CSF, had only modest effects, if any, on swarming and surfactin production. Therefore, during dendritic swarming, surfactin synthesis is apparently subject to novel regulation that is largely independent of the ComXP pathway; we discuss possible alternative mechanisms for driving srfABCD transcription. We showed that the phrC mutant, largely independent of any effect on surfactin production, was also, nevertheless, blocked early in swarming, forming stunted dendrites, with abnormal dendrite initiation morphology. In a mixed swarm co-inoculated with phrC sfp+ and phrC+ sfp (GFP), an apparently normal swarm was produced. In fact, while initiation of all dendrites was of the abnormal phrC type, these were predominantly populated by sfp cells, which migrated faster than the phrC cells. This and other results indicated a specific migration defect in the phrC mutant that could not be trans-complemented by CSF in a mixed swarm. CSF is the C-terminal pentapeptide of the surface-exposed PhrC pre-peptide and we propose that the residual PhrC 35 aa residue peptide anchored in the exterior of the cytoplasmic membrane has an apparently novel extracellular role in swarming.


2019 ◽  
Vol 5 (6) ◽  
pp. eaaw3307 ◽  
Author(s):  
Á. Chiner-Oms ◽  
L. Sánchez-Busó ◽  
J. Corander ◽  
S. Gagneux ◽  
S. R. Harris ◽  
...  

Models on how bacterial lineages differentiate increase our understanding of early bacterial speciation events and the genetic loci involved. Here, we analyze the population genomics events leading to the emergence of the tuberculosis pathogen. The emergence is characterized by a combination of recombination events involving core pathogenesis functions and purifying selection on early diverging loci. We identify the phoR gene, the sensor kinase of a two-component system involved in virulence, as a key functional player subject to pervasive positive selection after the divergence of the Mycobacterium tuberculosis complex from its ancestor. Previous evidence showed that phoR mutations played a central role in the adaptation of the pathogen to different host species. Now, we show that phoR mutations have been under selection during the early spread of human tuberculosis, during later expansions, and in ongoing transmission events. Our results show that linking pathogen evolution across evolutionary and epidemiological time scales points to past and present virulence determinants.


Sign in / Sign up

Export Citation Format

Share Document