scholarly journals Dual role for N-2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism.

1975 ◽  
Vol 122 (3) ◽  
pp. 799-809 ◽  
Author(s):  
R Voellmy ◽  
T Leisinger
2007 ◽  
Vol 189 (11) ◽  
pp. 3945-3953 ◽  
Author(s):  
Zhe Yang ◽  
Chung-Dar Lu

ABSTRACT Arginine utilization in Pseudomonas aeruginosa with multiple catabolic pathways represents one of the best examples of the metabolic versatility of this organism. To identify genes involved in arginine catabolism, we have employed DNA microarrays to analyze the transcriptional profiles of this organism in response to l-arginine. While most of the genes involved in arginine uptake, regulation, and metabolism have been identified as members of the ArgR (arginine-responsive regulatory protein) regulon in our previous study, they did not include any genes of the arginine dehydrogenase (ADH) pathway. In this study, 18 putative transcriptional units of 38 genes, including the two known genes of the ADH pathway, kauB and gbuA, were found to be inducible by exogenous l-arginine in the absence of ArgR. To identify the missing genes that encode enzymes for the initial steps of the ADH pathway, the potential physiological functions of those candidate genes in arginine utilization were studied by growth phenotype analysis of knockout mutants. Expression of these genes was induced by l-arginine in an aruF mutant strain devoid of a functional arginine succinyltransferase pathway, the major route of arginine utilization. Disruption of dadA, a putative catabolic alanine dehydrogenase-encoding gene, in the aruF mutant produced no growth on l-arginine, suggesting the involvement of l-alanine in arginine catabolism. This hypothesis was further supported by the detection of an l-arginine-inducible arginine:pyruvate transaminase activity in the aruF mutant. Knockout of aruH and aruI, which encode an arginine:pyruvate transaminase and a 2-ketoarginine decarboxylase in an operon, also abolished the ability of the aruF mutant to grow on l-arginine. The results of high-performance liquid chromatography analysis demonstrated consumption of 2-ketoarginine and suggested that generation of 4-guanidinobutyraldehyde occurred in the aruF mutant but not in the aruF aruI mutant. These results led us to propose the arginine transaminase pathway that removes the α-amino group of l-arginine via transamination instead of oxidative deamination by dehydrogenase or oxidase as originally proposed. In the same genetic locus, we also identified a two-component system, AruRS, for the regulation of arginine-responsive induction of the arginine transaminase pathway. This work depicted a wider network of arginine metabolism than we previously recognized.


2004 ◽  
Vol 186 (4) ◽  
pp. 1147-1157 ◽  
Author(s):  
Rasmus Larsen ◽  
Girbe Buist ◽  
Oscar P. Kuipers ◽  
Jan Kok

ABSTRACT The DNA binding proteins ArgR and AhrC are essential for regulation of arginine metabolism in Escherichia coli and Bacillus subtilis, respectively. A unique property of these regulators is that they form hexameric protein complexes, mediating repression of arginine biosynthetic pathways as well as activation of arginine catabolic pathways. The gltS-argE operon of Lactococcus lactis encodes a putative glutamate or arginine transport protein and acetylornithine deacetylase, which catalyzes an important step in the arginine biosynthesis pathway. By random integration knockout screening we found that derepression mutants had ISS1 integrations in, among others, argR and ahrC. Single as well as double regulator deletion mutants were constructed from Lactococcus lactis subsp. cremoris MG1363. The three arginine biosynthetic operons argCJDBF, argGH, and gltS-argE were shown to be repressed by the products of argR and ahrC. Furthermore, the arginine catabolic arcABD1C1C2TD2 operon was activated by the product of ahrC but not by that of argR. Expression from the promoter of the argCJDBF operon reached similar levels in the single mutants and in the double mutant, suggesting that the regulators are interdependent and not able to complement each other. At the same time they also appear to have different functions, as only AhrC is involved in activation of arginine catabolism. This is the first study where two homologous arginine regulators are shown to be involved in arginine regulation in a prokaryote, representing an unusual mechanism of regulation.


Gene ◽  
1990 ◽  
Vol 87 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Ernst Lüthi ◽  
Heinz Baur ◽  
Marianne Gamper ◽  
Franziska Brunner ◽  
Dominique Villeval ◽  
...  

2007 ◽  
Vol 189 (11) ◽  
pp. 3954-3959 ◽  
Author(s):  
Zhe Yang ◽  
Chung-Dar Lu

ABSTRACT The arginine transaminase (ATA) pathway represents one of the multiple pathways for l-arginine catabolism in Pseudomonas aeruginosa. The AruH protein was proposed to catalyze the first step in the ATA pathway, converting the substrates l-arginine and pyruvate into 2-ketoarginine and l-alanine. Here we report the initial biochemical characterization of this enzyme. The aruH gene was overexpressed in Escherichia coli, and its product was purified to homogeneity. High-performance liquid chromatography and mass spectrometry (MS) analyses were employed to detect the presence of the transamination products 2-ketoarginine and l-alanine, thus demonstrating the proposed biochemical reaction catalyzed by AruH. The enzymatic properties and kinetic parameters of dimeric recombinant AruH were determined by a coupled reaction with NAD+ and l-alanine dehydrogenase. The optimal activity of AruH was found at pH 9.0, and it has a novel substrate specificity with an order of preference of Arg > Lys > Met > Leu > Orn > Gln. With l-arginine and pyruvate as the substrates, Lineweaver-Burk plots of the data revealed a series of parallel lines characteristic of a ping-pong kinetic mechanism with calculated V max and k cat values of 54.6 ± 2.5 μmol/min/mg and 38.6 ± 1.8 s−1. The apparent Km and catalytic efficiency (k cat/Km ) were 1.6 ± 0.1 mM and 24.1 mM−1 s−1 for pyruvate and 13.9 ± 0.8 mM and 2.8 mM−1 s−1 for l-arginine. When l-lysine was used as the substrate, MS analysis suggested Δ1-piperideine-2-carboxylate as its transamination product. These results implied that AruH may have a broader physiological function in amino acid catabolism.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Hang Zhao ◽  
Bijit K. Bhowmik ◽  
Zoya M. Petrushenko ◽  
Valentin V. Rybenkov

Mechanisms that define the chromosome as a structural entity remain unknown. Key elements in this process are condensins, which globally organize chromosomes and contribute to their segregation. This study characterized condensin and chromosome dynamics in Pseudomonas aeruginosa, which harbors condensins from two major protein superfamilies, SMC and MksBEF. The study revealed that both proteins play a dual role in chromosome maintenance by spatially organizing the chromosomes and guiding their segregation but can substitute for each other in some activities. The timing of chromosome, SMC, and MksBEF relocation was highly ordered and interdependent, revealing causative relationships in the process. Moreover, MksBEF produced clusters at the site of chromosome replication that survived cell division and remained in place until replication was complete. Overall, these data delineate the functions of condensins from the SMC and MksBEF superfamilies, reveal the existence of a chromosome organizing center, and suggest a mechanism that might explain the biogenesis of chromosomes.


2006 ◽  
Vol 356 (3) ◽  
pp. 695-713 ◽  
Author(s):  
Santiago Ramón-Maiques ◽  
María Leonor Fernández-Murga ◽  
Fernando Gil-Ortiz ◽  
Alexei Vagin ◽  
Ignacio Fita ◽  
...  

1977 ◽  
Vol 154 (1) ◽  
pp. 7-22 ◽  
Author(s):  
Dieter Haas ◽  
Bruce W. Holloway ◽  
Anton Schamböck ◽  
Thomas Leisinger

2018 ◽  
Vol 13 (3) ◽  
pp. 297-312 ◽  
Author(s):  
Rekha Yamini Kosuru ◽  
Md Aashique ◽  
Aisha Fathima ◽  
Amrita Roy ◽  
Soumen Bera

Sign in / Sign up

Export Citation Format

Share Document