scholarly journals Bioenergetic properties and viability of alkalophilic Bacillus firmus RAB as a function of pH and Na+ contents of the incubation medium

1982 ◽  
Vol 152 (3) ◽  
pp. 1096-1104
Author(s):  
M Kitada ◽  
A A Guffanti ◽  
T A Krulwich

The bioenergetic properties and viability of obligately alkalophilic Bacillus firmus RAB have been examined upon incubation in alkaline and neutral buffers in the presence or absence of added Na+. At pH 10.5, cells incubated in the absence of Na+ exhibited an immediate rise in cytoplasmic pH from less than 9.5 to 10.5, and they lost viability very rapidly. Viability experiments in the presence or absence of an energy source further suggested that the Na+-dependent mechanism for pH homeostasis is an energy-requiring function. The Na+/H+ antiporter, which catalyzes the vital proton accumulation at alkaline pH, was only slightly operational at pH 7.0; both whole cells and vesicles exhibited net proton extrusion even in the presence of Na+. Moreover, cells incubated in buffer at pH 7.0 were actually more viable in the presence of Na+ than in its absence. Thus, the inability of B. firmus RAB to grow at neutral pH is not due to excessive acidification of the cytoplasm. Rather, the transmembrane electrical potential, delta psi, generated at pH 7.0 was found to be much lower than at alkaline pH. The very low delta psi compromised several cell functions, e.g., Na+/solute symport and motility, which in this and other alkalophiles specifically depend upon delta psi and Na+.

2021 ◽  
Author(s):  
Xianke Chen

Acid resistance of acidophiles is the result of long-term co-evolution and natural selection of acidophiles and their natural habitats, and formed a relatively optimal acid-resistance network in acidophiles. The acid tolerance network of acidophiles could be classified into active and passive mechanisms. The active mechanisms mainly include the proton efflux and consumption systems, generation of reversed transmembrane electrical potential, and adjustment of cell membrane composition; the passive mechanisms mainly include the DNA and protein repair systems, chemotaxis and cell motility, and quorum sensing system. The maintenance of pH homeostasis is a cell-wide physiological process that adopt differently adjustment strategies, deployment modules, and integration network depending on the cell’s own potential and its habitat environments. However, acidophiles exhibit obvious strategies and modules similarities on acid resistance because of the long-term evolution. Therefore, a comprehensive understanding of acid tolerance network of acidophiles would be helpful for the intelligent manufacturing and industrial application of acidophiles.


2001 ◽  
Vol 355 (1) ◽  
pp. 231-235 ◽  
Author(s):  
Brigitte SIBILLE ◽  
Céline FILIPPI ◽  
Marie-Astrid PIQUET ◽  
Pascale LECLERCQ ◽  
Eric FONTAINE ◽  
...  

In isolated mitochondria the consequences of oxidative phosphorylation uncoupling are well defined, whereas in intact cells various effects have been described. Uncoupling liver cells with 2,4-dinitrophenol (DNP) in the presence of dihydroxyacetone (DHA) and ethanol results in a marked decrease in mitochondrial transmembrane electrical potential (∆ψ), ATP/ADP ratios and gluconeogenesis (as an ATP-utilizing process), whereas the increased oxidation rate is limited and transient. Conversely, when DHA is associated with octanoate or proline, DNP addition results in a very large and sustained increase in oxidation rate, whereas the decreases in ∆ψ, ATP/ADP ratios and gluconeogenesis are significantly less when compared with DHA and ethanol. Hence significant energy wastage (high oxidation rate) by uncoupling is achieved only with substrates that are directly oxidized in the mitochondrial matrix. Conversely in the presence of substrates that are first oxidized in the cytosol, uncoupling results in a profound decrease in mitochondrial ∆ψ and ATP synthesis, whereas energy wastage is very limited.


1999 ◽  
Vol 181 (21) ◽  
pp. 6600-6606 ◽  
Author(s):  
Rikizo Aono ◽  
Masahiro Ito ◽  
Takayoshi Machida

ABSTRACT A teichuronopeptide (TUP) is one of major structural components of the cell wall of the facultative alkaliphilic strain Bacillus lentus C-125. A mutant defective in TUP synthesis grows slowly at alkaline pH. An upper limit of pH for growth of the mutant was 10.4, while that of the parental strain C-125 was 10.8. GenetupA, directing synthesis of TUP, was cloned from C-125 chromosomal DNA. The primary translation product of this gene is likely a cytoplasmic protein (57.3 kDa) consisting of 489 amino acid residues. Introduction of the tupA gene into the TUP-defective mutant complemented the mutation responsible for the pleiotropic phenotypes of the mutant, leading to simultaneous disappearance of the defect in TUP synthesis, the diminished ability for cytoplasmic pH homeostasis, and the low tolerance for alkaline conditions. These results demonstrate that the acidic polymer TUP in the cell wall plays a role in pH homeostasis in this alkaliphile.


1994 ◽  
Vol 196 (1) ◽  
pp. 457-470 ◽  
Author(s):  
T A Krulwich ◽  
J Cheng ◽  
A A Guffanti

Both neutralophilic Bacillus subtilis and alkaliphilic Bacillus firmus OF4 depend upon electrogenic Na+/H+ antiporters, which are energized by the gradients established by respiration-coupled proton extrusion, to achieve Na(+)-resistance and pH homeostasis when the external pH is very alkaline. The interplay of proton and sodium cycles is discussed. In B. subtilis, pH homeostasis, up to pH9, can be achieved using K+ when Na+ is unavailable or when the gene encoding the Na+/H+ antiporter that is involved in Na(+)-dependent pH homeostasis is disrupted. That gene is a member of the tetracycline efflux family of genes. A second gene, encoding a Na+/H+ antiporter that functions in Na(+)-resistance, has been identified, and candidates for the K+/H+ antiporter genes are under investigation. Aggregate Na+/H+ antiport activity in B. subtilis is as much as 10 times lower than in the alkaliphile, and the neutralophile cannot regulate its internal pH upon a shift to pH 10.5. Upon such a shift, there is a pronounced reduction in the generation of a primary electrochemical proton gradient. The alkaliphile, by contrast, maintains substantial driving forces and regulates its internal pH in an exclusively Na(+)-coupled manner upon shifts to either pH 8.7 or 10.5. One gene locus has been identified and a second locus has been inferred as encoding relevant antiporter activities.


1991 ◽  
Vol 261 (4) ◽  
pp. F663-F669 ◽  
Author(s):  
R. Beliveau ◽  
J. Strevey

The effect of a transmembrane electrical potential on phosphate transport by kidney brush-border membrane vesicles was studied. The initial rate of Na(+)-dependent phosphate influx was twice as high as that of efflux. Generation of a negative transmembrane potential had a stimulatory effect on the rate of influx but had no effect on efflux. The Na+ saturation curve for phosphate influx was sigmoidal, and the Hill coefficients were similar, in the presence and absence of a transmembrane potential. The membrane potential increased both the affinity for phosphate and the maximal velocity (Vmax) of the transporter. In the absence of a Na+ gradient, the stimulation by the potential was 1.78-fold. When a proton gradient (in greater than out) was the driving force, the electrical potential stimulated phosphate transport 1.71-fold. Internal Na+ (trans) inhibited phosphate influx whether a potential was present or not. Internal phosphate (trans) stimulated phosphate influx in the absence of a potential but not in its presence. These results indicate that the electrical potential is an important driving force for the Na(+)-phosphate carrier and that the translocation of the carrier is a potential-dependent step.


1990 ◽  
Vol 259 (5) ◽  
pp. F758-F767
Author(s):  
G. A. Ahearn ◽  
P. Franco

Na uptake by short-circuited epithelial brush-border membrane vesicles of Atlantic lobster (Homarus americanus) antennal gland labyrinth was Cl independent, amiloride sensitive, and stimulated by a transmembrane H+ gradient [( H]i greater than [H]o; i is internal, o is external). Na influx (2.5-s uptake) was a sigmoidal function of [Na]o (25-400 mM) when pHi = 5.0 and pHo = 8.0 and followed the Hill equation for binding cooperatively [apparent maximal influx (Jmax) = 271 nmol.mg protein-1.s-1, apparent affinity constant for Na (KNa) = 310 mM Na, and Hill coefficient (n) = 2.41]. Amiloride acted as a competitive inhibitor of Na binding to two external sites with markedly dissimilar apparent amiloride affinities (Ki1 = 14 microM; Ki2 = 1,340 mM). Electrogenic Na-H antiport by these vesicles was demonstrated by equilibrium-shift experiments in which an imposed transmembrane electrical potential difference was the only driving force for exchange. A transport stoichiometry of 2 Na to 1 H was demonstrated with the static-head technique in which a balance of driving forces was attained with 10:1 Na gradient and 100:1 H gradient. External Ca, like amiloride, was a strong competitive inhibitor of Na-H exchange, acting at two sites on the outer vesicular face with markedly different apparent divalent cation affinities (Ki1 = 20 microM; Ki2 = 500 microM). Ca-H exchange by electrogenic Na-H antiporter was demonstrated in complete absence of Na by use of an outward H gradient in presence and absence of amiloride. Both external amiloride (Ki1 = 70 microM; Ki2 = 500 microM) and Na (Ki1 = 12 mM; Ki2 = 380 mM) were competitive inhibitors of Ca-H exchange. These results suggest that the electrogenic 2 Na-1 H exchanger characterized for this crustacean epithelium may also have a role in organismic Ca balance.


Sign in / Sign up

Export Citation Format

Share Document