scholarly journals Isolation and characterization of Schizosaccharomyces pombe mutants defective in cell wall (1-3)beta-D-glucan.

1991 ◽  
Vol 173 (11) ◽  
pp. 3456-3462 ◽  
Author(s):  
J C Ribas ◽  
M Diaz ◽  
A Duran ◽  
P Perez
2010 ◽  
Vol 9 (11) ◽  
pp. 1650-1660 ◽  
Author(s):  
Encarnación Dueñas-Santero ◽  
Ana Belén Martín-Cuadrado ◽  
Thierry Fontaine ◽  
Jean-Paul Latgé ◽  
Francisco del Rey ◽  
...  

ABSTRACT In yeast, enzymes with β-glucanase activity are thought to be necessary in morphogenetic events that require controlled hydrolysis of the cell wall. Comparison of the sequence of the Saccharomyces cerevisiae exo-β(1,3)-glucanase Exg1 with the Schizosaccharomyces pombe genome allowed the identification of three genes that were named exg1 + (locus SPBC1105.05), exg2 + (SPAC12B10.11), and exg3 + (SPBC2D10.05). The three proteins have different localizations: Exg1 is secreted to the periplasmic space, Exg2 is a membrane protein, and Exg3 is a cytoplasmic protein. Characterization of the biochemical activity of the proteins indicated that Exg1 and Exg3 are active only against β(1,6)-glucans while no activity was detected for Exg2. Interestingly, Exg1 cleaves the glucans with an endohydrolytic mode of action. exg1 + showed periodic expression during the cell cycle, with a maximum coinciding with the septation process, and its expression was dependent on the transcription factor Sep1. The Exg1 protein localizes to the septum region in a pattern that was different from that of the endo-β(1,3)-glucanase Eng1. Overexpression of Exg2 resulted in an increase in cell wall material at the poles and in the septum, but the putative catalytic activity of the protein was not required for this effect.


1986 ◽  
Vol 32 (6) ◽  
pp. 481-486 ◽  
Author(s):  
C. Osothsilp ◽  
R. E. Subden

To obtain NAD-dependent malic enzyme mutants of Schizosaccharomyces pombe, a colony color indicator screening system was developed. Mutants defective for malic acid utilization (mau mutants) are yellow, while wild-type colonies are blue on the defined bromcresol green based indicator medium. NAD-dependent malic enzyme mutants were distinguished from other mau mutants by subsequent, starch gel electrophoresis, spectrophotometry, complementation tests, and intermediate pool analysis with cell-free extracts.


Gene ◽  
1992 ◽  
Vol 119 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Brent L. Seaton ◽  
Jennifer Yucel ◽  
Per Sunnerhagen ◽  
Suresh Subramani

Author(s):  
WILLIAM S. YORK ◽  
ALAN G. DARVILL ◽  
MICHAEL MCNEIL ◽  
THOMAS T. STEVENSON ◽  
PETER ALBERSHEIM

Author(s):  
William S. York ◽  
Alan G. Darvill ◽  
Michael McNeil ◽  
Thomas T. Stevenson ◽  
Peter Albersheim

1978 ◽  
Vol 32 (1) ◽  
pp. 337-356
Author(s):  
M.E. Callow ◽  
S.J. Coughlan ◽  
L.V. Evans

The cell wall of 24-h zygotes of Fucus serratus is composed of 3 layers—an inner fibrillar layer (sulphated fucan), an outer fibrillar layer (alginic aicd/cellulose) and an exterior amorphous layer (sulphated fucan, alginic acid). The 2 layers containing sulphated fucan are preferentially thickened at the rhizoid pole. Light- and electron-microscope autoradiographic pulse-chase experiments on 22-h zygotes using 35SO2-(4) show the Golgi bodies to be the sites of fucan sulphation. The isolation and characterization of isolated Golgi-rich fractions from 22-h zygotes shows that the first detectable labelled macromolecule is associated with these fractions 2 min after addition of 35SO2-(4). The sulphate acceptor molecule has been partially characterized. 35S-APS and 35S-paps are detectable in the soluble fraction 0.5 min after addition of 35SO2-(4). The results are discussed in relation to other published work on the differentiation of Fucus embryos and on polysaccharide sulphation.


1994 ◽  
Vol 14 (6) ◽  
pp. 3895-3905
Author(s):  
S Kjaerulff ◽  
J Davey ◽  
O Nielsen

We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M-factor. Here we describe the isolation and characterization of a third M-factor gene, mfm3. A mutant lacking all three genes fails to produce M-factor, indicating that all functional M-factor genes now have been identified. The triple mutant exhibits an absolute mating defect in M cells, a defect that is not rescued by addition of exogenous M-factor. A mutational analysis reveals that all three mfm genes contribute to the production of M-factor. Their transcription is limited to M cells and requires the mat1-Mc and ste11 gene products. Each gene is induced when the cells are starved of nitrogen and further induced by a pheromone signal. Additionally, the signal transduction machinery associated with the pheromone response is required for transcription of the mfm genes in both stimulated and unstimulated cells.


Sign in / Sign up

Export Citation Format

Share Document