scholarly journals Negative autoregulation by the Escherichia coli SoxS protein: a dampening mechanism for the soxRS redox stress response.

1993 ◽  
Vol 175 (22) ◽  
pp. 7492-7494 ◽  
Author(s):  
T Nunoshiba ◽  
E Hidalgo ◽  
Z Li ◽  
B Demple
Author(s):  
Ángel Rodríguez-Villodres ◽  
Rocío Álvarez-Marín ◽  
María Antonia Pérez-Moreno ◽  
Andrea Miró-Canturri ◽  
Marco Durán Lobato ◽  
...  

Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1173-1181
Author(s):  
Zehava Eichenbaum ◽  
Zvi Livneh

Abstract A new mutagenesis assay system based on the phage 434 cI gene carried on a low-copy number plasmid was used to investigate the effect of UV light on intermolecular transposition of IS10. Inactivation of the target gene by IS10 insertion was detected by the expression of the tet gene from the phage 434 PR promoter, followed by Southern blot analysis of plasmids isolated from TetR colonies. UV irradiation of cells harboring the target plasmid and a donor plasmid carrying an IS10 element led to an increase of up to 28-fold in IS10 transposition. Each UV-induced transposition of IS10 was accompanied by fusion of the donor and acceptor plasmid into a cointegrate structure, due to coupled homologous recombination at the insertion site, similar to the situation in spontaneous IS10 transposition. UV radiation also induced transposition of IS10 from the chromosome to the target plasmid, leading almost exclusively to the integration of the target plasmid into the chromosome. UV induction of IS10 transposition did not depend on the umuC and uvrA gene product, but it was not observed in lexA3 and ΔrecA strains, indicating that the SOS stress response is involved in regulating UV-induced transposition. IS10 transposition, known to increase the fitness of Escherichia coli, may have been recruited under the SOS response to assist in increasing cell survival under hostile environmental conditions. To our knowledge, this is the first report on the induction of transposition by a DNA-damaging agent and the SOS stress response in bacteria.


2016 ◽  
Vol 49 (3) ◽  
pp. 329-334 ◽  
Author(s):  
Wen-Shyang Hsieh ◽  
Yi-Yuan Yang ◽  
Hsin-Yi Yang ◽  
Yu-Shan Huang ◽  
Hsueh-Hsia Wu

1990 ◽  
Vol 68 (7-8) ◽  
pp. 1037-1044 ◽  
Author(s):  
Peter C. Loewen ◽  
Jacek Switala ◽  
Mark Smolenski ◽  
Barbara L. Triggs-Raine

Hydroperoxidase I (HPI) of Escherichia coli is a bifunctional enzyme exhibiting both catalase and peroxidase activities. Mutants lacking appreciable HPI have been generated using nitrosoguanidine and the gene encoding HPI, katG, has been cloned from three of these mutants using either classical probing methods or polymerase chain reaction amplification. The mutant genes were sequenced and the changes from wild-type sequence identified. Two mutants contained G to A changes in the coding strand, resulting in glycine to aspartate changes at residues 119 (katG15) and 314 (katG16) in the deduced amino acid sequence of the protein. A third mutant contained a C to T change resulting in a leucine to phenylalanine change at residue 139 (katG14). The Phe139-, Asp119-, and Asp314-containing mutants exhibited 13, < 1, and 18%, respectively, of the wild-type catalase specific activity and 43, 4, and 45% of the wild-type peroxidase specific activity. All mutant enzymes bound less protoheme IX than the wild-type enzyme. The sensitivities of the mutant enzymes to the inhibitors hydroxylamine, azide, and cyanide and the activators imidazole and Tris were similar to those of the wild-type enzyme. The mutant enzymes were more sensitive to high temperature and to β-mercaptoethanol than the wild-type enzyme. The pH profiles of the mutant catalases were unchanged from the wild-type enzyme.Key words: catalase, hydroperoxidase I, mutants, sequence analysis.


2016 ◽  
Vol 79 (10) ◽  
pp. 1673-1679 ◽  
Author(s):  
ACHYUT ADHIKARI ◽  
ANDY BARY ◽  
CRAIG COGGER ◽  
CALEB JAMES ◽  
GÜLHAN ÜNLÜ ◽  
...  

ABSTRACT Pathogens exposed to agricultural production environments are subject to multiple stresses that may alter their survival under subsequent stress conditions. The objective of this study was to examine heat and starvation stress response of Escherichia coli O157:H7 strains isolated from agricultural matrices. Seven E. coli O157:H7 isolates from different agricultural matrices—soil, compost, irrigation water, and sheep manure—were selected, and two ATCC strains were used as controls. The E. coli O157:H7 isolates were exposed to heat stress (56°C in 0.1% peptone water for up to 1 h) and starvation (in phosphate-buffered saline at 37°C for 15 days), and their survival was examined. GInaFiT freeware tool was used to perform regression analyses of the surviving populations. The Weibull model was identified as the most appropriate model for response of the isolates to heat stress, whereas the biphasic survival curves during starvation were fitted using the double Weibull model, indicating the adaptation to starvation or a resistant subpopulation. The inactivation time during heating to achieve the first decimal reduction time (δ) calculated with the Weibull parameters was the highest (45 min) for a compost isolate (Comp60A) and the lowest (28 min) for ATCC strain 43895. Two of the nine isolates (ATCC 43895 and a manure isolate) had β &lt; 1, indicating that surviving populations adapted to heat stress, and six strains demonstrated downward concavity (β &gt; 1), indicating decreasing heat resistance over time. The ATCC strains displayed the longest δ2 (&gt;1,250 h) in response to starvation stress, compared with from 328 to 812 h for the environmental strains. The considerable variation in inactivation kinetics of E. coli O157:H7 highlights the importance of evaluating response to stress conditions among individual strains of a specific pathogen. Environmental isolates did not exhibit more robust response to stress conditions in this study compared with ATCC strains.


2004 ◽  
Vol 186 (18) ◽  
pp. 6179-6185 ◽  
Author(s):  
Richard A. Lease ◽  
Dorie Smith ◽  
Kathleen McDonough ◽  
Marlene Belfort

ABSTRACT DsrA RNA is a small (87-nucleotide) regulatory RNA of Escherichia coli that acts by RNA-RNA interactions to control translation and turnover of specific mRNAs. Two targets of DsrA regulation are RpoS, the stationary-phase and stress response sigma factor (σs), and H-NS, a histone-like nucleoid protein and global transcription repressor. Genes regulated globally by RpoS and H-NS include stress response proteins and virulence factors for pathogenic E. coli. Here, by using transcription profiling via DNA arrays, we have identified genes induced by DsrA. Steady-state levels of mRNAs from many genes increased with DsrA overproduction, including multiple acid resistance genes of E. coli. Quantitative primer extension analysis verified the induction of individual acid resistance genes in the hdeAB, gadAX, and gadBC operons. E. coli K-12 strains, as well as pathogenic E. coli O157:H7, exhibited compromised acid resistance in dsrA mutants. Conversely, overproduction of DsrA from a plasmid rendered the acid-sensitive dsrA mutant extremely acid resistant. Thus, DsrA RNA plays a regulatory role in acid resistance. Whether DsrA targets acid resistance genes directly by base pairing or indirectly via perturbation of RpoS and/or H-NS is not known, but in either event, our results suggest that DsrA RNA may enhance the virulence of pathogenic E. coli.


Sign in / Sign up

Export Citation Format

Share Document