scholarly journals Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci.

1997 ◽  
Vol 179 (17) ◽  
pp. 5632-5635 ◽  
Author(s):  
M J Pucci ◽  
J A Thanassi ◽  
L F Discotto ◽  
R E Kessler ◽  
T J Dougherty
2009 ◽  
Vol 191 (10) ◽  
pp. 3415-3419 ◽  
Author(s):  
Hyun Sook Lee ◽  
Yun Jae Kim ◽  
Jung-Hyun Lee ◽  
Sung Gyun Kang

ABSTRACT Two hypothetical genes were functionally verified to be a pyrophosphatase and a PAP phosphatase in Thermococcus onnurineus NA1. This is the first report of the pyrophosphatases and the PAP phosphatases being organized in the gene clusters of the sulfate activation system only in T. onnurineus NA1 and “Pyrococcus abyssi.”


2001 ◽  
Vol 355 (2) ◽  
pp. 431 ◽  
Author(s):  
Daniel R. SYLVESTER ◽  
Emilio ALVAREZ ◽  
Arun PATEL ◽  
Kapila RATNAM ◽  
Howard KALLENDER ◽  
...  

1999 ◽  
Vol 181 (20) ◽  
pp. 6347-6353 ◽  
Author(s):  
Richard van Kranenburg ◽  
Harmjan R. Vos ◽  
Iris I. van Swam ◽  
Michiel Kleerebezem ◽  
Willem M. de Vos

ABSTRACT Sixteen exopolysaccharide (EPS)-producing Lactococcus lactis strains were analyzed for the chemical compositions of their EPSs and the locations, sequences, and organization of theeps genes involved in EPS biosynthesis. This allowed the grouping of these strains into three major groups, representatives of which were studied in detail. Previously, we have characterized theeps gene cluster of strain NIZO B40 (group I) and determined the function of three of its glycosyltransferase (GTF) genes. Fragments of the eps gene clusters of strains NIZO B35 (group II) and NIZO B891 (group III) were cloned, and these encoded the NIZO B35 priming galactosyltransferase, the NIZO B891 priming glucosyltransferase, and the NIZO B891 galactosyltransferase involved in the second step of repeating-unit synthesis. The NIZO B40 priming glucosyltransferase gene epsD was replaced with an erythromycin resistance gene, and this resulted in loss of EPS production. This epsD deletion was complemented with priming GTF genes from gram-positive organisms with known function and substrate specificity. Although no EPS production was found with priming galactosyltransferase genes from L. lactis orStreptococcus thermophilus, complementation with priming glucosyltransferase genes involved in L. lactis EPS andStreptococcus pneumoniae capsule biosynthesis could completely restore or even increase EPS production in L. lactis.


2009 ◽  
Vol 35 (3) ◽  
pp. 347-352 ◽  
Author(s):  
Kazuyoshi Yamane ◽  
Kan Ogawa ◽  
Masahiro Yoshida ◽  
Hiroyuki Hayashi ◽  
Toshio Nakamura ◽  
...  

1987 ◽  
Vol 243 (1) ◽  
pp. 309-312 ◽  
Author(s):  
H K Young ◽  
R A Skurray ◽  
S G B Amyes

The trimethoprim-resistance gene located on plasmid pSK1, originally identified in a multi-resistant Staphylococcus aureus from Australia, encodes the production of a dihydrofolate reductase (type S1), which confers a high degree of resistance to its host and is quite unlike any plasmid-encoded dihydrofolate reductase hitherto described. It has a low Mr (19,700) and has a higher specific activity than the constitutive Gram-negative plasmid dihydrofolate reductases. The type S1 enzyme is heat-stable and has a relatively low affinity for the substrate, dihydrofolate (Km 10.8 microM). It is moderately resistant to trimethoprim, and is competitively inhibited by this drug with an inhibitor-binding constant of 11.6 microM. This is the first identification and characterization of a plasmid-encoded trimethoprim-resistant dihydrofolate reductase derived from a Gram-positive species.


1997 ◽  
Vol 25 (3) ◽  
pp. 856-860 ◽  
Author(s):  
F. M. Klis ◽  
L. H. P. Caro ◽  
J. H. Vossen ◽  
J. C. Kapteyn ◽  
A. F. J. Ram ◽  
...  

2008 ◽  
Vol 74 (24) ◽  
pp. 7607-7612 ◽  
Author(s):  
Edyta Szewczyk ◽  
Yi-Ming Chiang ◽  
C. Elizabeth Oakley ◽  
Ashley D. Davidson ◽  
Clay C. C. Wang ◽  
...  

ABSTRACT The sequencing of Aspergillus genomes has revealed that the products of a large number of secondary metabolism pathways have not yet been identified. This is probably because many secondary metabolite gene clusters are not expressed under normal laboratory culture conditions. It is, therefore, important to discover conditions or regulatory factors that can induce the expression of these genes. We report that the deletion of sumO, the gene that encodes the small ubiquitin-like protein SUMO in A. nidulans, caused a dramatic increase in the production of the secondary metabolite asperthecin and a decrease in the synthesis of austinol/dehydroaustinol and sterigmatocystin. The overproduction of asperthecin in the sumO deletion mutant has allowed us, through a series of targeted deletions, to identify the genes required for asperthecin synthesis. The asperthecin biosynthesis genes are clustered and include genes encoding an iterative type I polyketide synthase, a hydrolase, and a monooxygenase. The identification of these genes allows us to propose a biosynthetic pathway for asperthecin.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6580
Author(s):  
Charlotte Beck ◽  
Tetiana Gren ◽  
Francisco Javier Ortiz-López ◽  
Tue Sparholt Jørgensen ◽  
Daniel Carretero-Molina ◽  
...  

Streptomyces are well-known producers of a range of different secondary metabolites, including antibiotics and other bioactive compounds. Recently, it has been demonstrated that “silent” biosynthetic gene clusters (BGCs) can be activated by heterologously expressing transcriptional regulators from other BGCs. Here, we have activated a silent BGC in Streptomyces sp. CA-256286 by overexpression of a set of SARP family transcriptional regulators. The structure of the produced compound was elucidated by NMR and found to be an N-acetyl cysteine adduct of the pyranonaphtoquinone polyketide 3′-O-α-d-forosaminyl-(+)-griseusin A. Employing a combination of multi-omics and metabolic engineering techniques, we identified the responsible BGC. These methods include genome mining, proteomics and transcriptomics analyses, in combination with CRISPR induced gene inactivations and expression of the BGC in a heterologous host strain. This work demonstrates an easy-to-implement workflow of how silent BGCs can be activated, followed by the identification and characterization of the produced compound, the responsible BGC, and hints of its biosynthetic pathway.


Sign in / Sign up

Export Citation Format

Share Document