scholarly journals Analysis of Bacillus subtilis tagAB andtagDEF Expression during Phosphate Starvation Identifies a Repressor Role for PhoP∼P

1998 ◽  
Vol 180 (3) ◽  
pp. 753-758 ◽  
Author(s):  
Wei Liu ◽  
Stephen Eder ◽  
F. Marion Hulett

ABSTRACT The tagAB and tagDEF operons, which are adjacent and divergently transcribed, encode genes responsible for cell wall teichoic acid synthesis in Bacillus subtilis. TheBacillus data presented here suggest that PhoP and PhoR are required for direct repression of transcription of the two operons under phosphate starvation conditions but have no regulatory role under phosphate-replete conditions. These data identify for the first time that PhoP∼P has a negative role in Pho regulon gene regulation.

2006 ◽  
Vol 188 (23) ◽  
pp. 8313-8316 ◽  
Author(s):  
Michael A. D'Elia ◽  
Kathryn E. Millar ◽  
Terry J. Beveridge ◽  
Eric D. Brown

ABSTRACT An extensive literature has established that the synthesis of wall teichoic acid in Bacillus subtilis is essential for cell viability. Paradoxically, we have recently shown that wall teichoic acid biogenesis is dispensable in Staphylococcus aureus (M. A. D'Elia, M. P. Pereira, Y. S. Chung, W. Zhao, A. Chau, T. J. Kenney, M. C. Sulavik, T. A. Black, and E. D. Brown, J. Bacteriol. 188:4183-4189, 2006). A complex pattern of teichoic acid gene dispensability was seen in S. aureus where the first gene (tarO) was dispensable and later acting genes showed an indispensable phenotype. Here we show, for the first time, that wall teichoic acid synthesis is also dispensable in B. subtilis and that a similar gene dispensability pattern is seen where later acting enzymes display an essential phenotype, while the gene tagO, whose product catalyzes the first step in the pathway, could be deleted to yield viable mutants devoid of teichoic acid in the cell wall.


1969 ◽  
Vol 111 (1) ◽  
pp. 1-5 ◽  
Author(s):  
D C Ellwood ◽  
D. W. Tempest

1. Quantitative determination of the anionic polymers present in the walls of Bacillus subtilis var. niger organisms undergoing transition, in a chemostat culture, from either Mg2+-limitation to PO43−-limitation or K+-limitation to PO43−-limitation showed that teichuronic acid synthesis started immediately the culture became PO43−-limited and proceeded at a rate substantially faster than the rate of biomass synthesis. 2. Simultaneously, the cell-wall teichoic acid content diminished at a rate greater than that due to dilution by newly synthesized wall material, and fragments of teichoic acid and mucopeptide accumulated in the culture extracellular fluid. 3. Equally rapid reverse changes occurred when a PO43−-limited B. subtilis var. niger culture was returned to being Mg2+-limited. 4. It is concluded that in this organism both teichoic acid and teichuronic acid syntheses are expressions of a single genotype, and a mechanism for the control of synthesis of both polymers is suggested. 5. These results are discussed with reference to the constantly changing environmental conditions that obtain in a batch culture and the variation in bacterial cell-wall composition that is reported to occur throughout the growth cycle.


Microbiology ◽  
2005 ◽  
Vol 151 (9) ◽  
pp. 3041-3049 ◽  
Author(s):  
Kathrin Minnig ◽  
Vladimir Lazarevic ◽  
Blazenka Soldo ◽  
Catherine Mauël

The expression of the Bacillus subtilis W23 tar genes specifying the biosynthesis of the major wall teichoic acid, the poly(ribitol phosphate), was studied under phosphate limitation using lacZ reporter fusions. Three different regulation patterns can be deduced from these β-galactosidase activity data: (i) tarD and tarL gene expression is downregulated under phosphate starvation; (ii) tarA and, to a minor extent, tarB expression after an initial decrease unexpectedly increases; and (iii) tarO is not influenced by phosphate concentration. To dissect the tarA regulatory pattern, its two promoters were analysed under phosphate limitation: The P tarA -ext promoter is repressed under phosphate starvation by the PhoPR two-component system, whereas, under the same conditions, the P tarA -int promoter is upregulated by the action of an extracytoplasmic function (ECF) σ factor, σ M. In contrast to strain 168, σ M is activated in strain W23 in phosphate-depleted conditions, a phenomenon indirectly dependent on PhoPR, the two-component regulatory system responsible for the adaptation to phosphate starvation. These results provide further evidence for the role of σ M in cell-wall stress response, and suggest that impairment of cell-wall structure is the signal activating this ECF σ factor.


2015 ◽  
Vol 197 (8) ◽  
pp. 1492-1506 ◽  
Author(s):  
Letal I. Salzberg ◽  
Eric Botella ◽  
Karsten Hokamp ◽  
Haike Antelmann ◽  
Sandra Maaß ◽  
...  

ABSTRACTThe PhoPR two-component signal transduction system controls one of three responses activated byBacillus subtilisto adapt to phosphate-limiting conditions (PHO response). The response involves the production of enzymes and transporters that scavenge for phosphate in the environment and assimilate it into the cell. However, inB. subtilisand some otherFirmicutesbacteria, cell wall metabolism is also part of the PHO response due to the high phosphate content of the teichoic acids attached either to peptidoglycan (wall teichoic acid) or to the cytoplasmic membrane (lipoteichoic acid). Prompted by our observation that the phosphorylated WalR (WalR∼P) response regulator binds to more chromosomal loci than are revealed by transcriptome analysis, we established the PhoP∼P bindome in phosphate-limited cells. Here, we show that PhoP∼P binds to the chromosome at 25 loci: 12 are within the promoters of previously identified PhoPR regulon genes, while 13 are newly identified. We extend the role of PhoPR in cell wall metabolism showing that PhoP∼P binds to the promoters of four cell wall-associated operons (ggaAB,yqgS,wapA, anddacA), although none show PhoPR-dependent expression under the conditions of this study. We also show that positive autoregulation ofphoPRexpression and full induction of the PHO response upon phosphate limitation require PhoP∼P binding to the 3′ end of thephoPRoperon.IMPORTANCEThe PhoPR two-component system controls one of three responses mounted byB. subtilisto adapt to phosphate limitation (PHO response). Here, establishment of the phosphorylated PhoP (PhoP∼P) bindome enhances our understanding of the PHO response in two important ways. First, PhoPR plays a more extensive role in adaptation to phosphate-limiting conditions than was deduced from transcriptome analyses. Among 13 newly identified binding sites, 4 are cell wall associated (ggaAB,yqgS,wapA, anddacA), revealing that PhoPR has an extended involvement in cell wall metabolism. Second, amplification of the PHO response must occur by a novel mechanism since positive autoregulation ofphoPRexpression requires PhoP∼P binding to the 3′ end of the operon.


1998 ◽  
Vol 180 (15) ◽  
pp. 4007-4010 ◽  
Author(s):  
Ying Qi ◽  
F. Marion Hulett

ABSTRACT tagA, tagD, and tuaA operons are responsible for the synthesis of cell wall anionic polymer, teichoic acid, and teichuronic acid, respectively, in Bacillus subtilis. Under phosphate starvation conditions, teichuronic acid is synthesized while teichoic acid synthesis is inhibited. Expression of these genes is controlled by PhoP-PhoR, a two-component system. It has been proposed that PhoP∼P plays a key role in the activation oftuaA and the repression of tagA andtagD. In this study, we demonstrated the role of PhoP∼P in the switch process from teichoic acid synthesis to teichuronic acid synthesis, by using an in vitro transcription system. The results indicate that PhoP∼P is sufficient to repress the transcription of the tagA and tagD promoters and also to activate the transcription of the tuaA promoter.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Pan ◽  
Jing Guan ◽  
Yujie Li ◽  
Baolin Sun

The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes severe pandemics primarily consisting of skin and soft tissue infections. However, the underlying pathomechanisms of the bacterium are yet to fully understood. The present study identifies LcpB protein, which belongs to the LytR-A-Psr (LCP) family, is crucial for cell wall synthesis and virulence in S. aureus. The findings revealed that LcpB is a pyrophosphatase responsible for wall teichoic acid synthesis. The results also showed that LcpB regulates enzyme activity through specific key arginine sites in its LCP domain. Furthermore, knockout of lcpB in the CA-MRSA isolate ST59 resulted in enhanced hemolytic activity, enlarged of abscesses, and increased leukocyte infiltration. Meanwhile, we also found that LcpB regulates virulence in agr-independent manner and the key sites for pyrophosphatase of LcpB play critical roles in regulating the virulence. In addition, the results showed that the role of LcpB was different between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). This study therefore highlights the dual role of LcpB in cell wall synthesis and regulation of virulence. These insights on the underlying molecular mechanisms can thus guide the development of novel anti-infective strategies.


Sign in / Sign up

Export Citation Format

Share Document