scholarly journals Two Distinct Mechanisms Cause Heterogeneity of 16S rRNA

1999 ◽  
Vol 181 (1) ◽  
pp. 78-82 ◽  
Author(s):  
Kumiko Ueda ◽  
Tatsuji Seki ◽  
Takuji Kudo ◽  
Toshiomi Yoshida ◽  
Masakazu Kataoka

ABSTRACT To investigate the frequency of heterogeneity among the multiple 16S rRNA genes within a single microorganism, we determined directly the 120-bp nucleotide sequences containing the hypervariable α region of the 16S rRNA gene from 475 Streptomyces strains. Display of the direct sequencing patterns revealed the existence of 136 heterogeneous loci among a total of 33 strains. The heterogeneous loci were detected only in the stem region designated helix 10. All of the substitutions conserved the relevant secondary structure. The 33 strains were divided into two groups: one group, including 22 strains, had less than two heterogeneous bases; the other group, including 11 strains, had five or more heterogeneous bases. The two groups were different in their combinations of heterogeneous bases. The former mainly contained transitional substitutions, and the latter was mainly composed of transversional substitutions, suggesting that at least two mechanisms, possibly misincorporation during DNA replication and horizontal gene transfer, cause rRNA heterogeneity.

2004 ◽  
Vol 54 (4) ◽  
pp. 1349-1353 ◽  
Author(s):  
Chuji Hiruki ◽  
Keri Wang

Clover proliferation phytoplasma (CPR) is designated as the reference strain for the CP phylogenetic group or subclade, on the basis of molecular analyses of genomic DNA, the 16S rRNA gene and the 16S–23S spacer region. Other strains related to CPR include alfalfa witches'-broom (AWB), brinjal little leaf (BLL), beet leafhopper-transmitted virescence (BLTV), Illinois elm yellows (ILEY), potato witches'-broom (PWB), potato yellows (PY), tomato big bud in California (TBBc) and phytoplasmas from Fragaria multicipita (FM). Phylogenetic analysis of the 16S rRNA gene sequences of BLL, CPR, FM and ILEY, together with sequences from 16 other phytoplasmas that belong to the ash yellows (AshY), jujube witches'-broom (JWB) and elm yellows (EY) groups that were available in GenBank, produced a tree on which these phytoplasmas clearly clustered as a discrete group. Three subgroups have been classified on the basis of sequence homology and the collective RFLP patterns of amplified 16S rRNA genes. AWB, BLTV, PWB and TBBc are assigned to taxonomic subgroup CP-A, FM belongs to subgroup CP-B and BLL and ILEY are assigned to subgroup CP-C. Genetic heterogeneity between different isolates of AWB, CPR and PWB has been observed from heteroduplex mobility assay analysis of amplified 16S rRNA genes and the 16S–23S spacer region. Two unique signature sequences that can be utilized to distinguish the CP group from others were present. On the basis of unique properties of the DNA from clover proliferation phytoplasma, the name ‘Candidatus Phytoplasma trifolii’ is proposed for the CP group.


2006 ◽  
Vol 55 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Ali Al-Ahmad ◽  
Thorsten Mathias Auschill ◽  
Gabriele Braun ◽  
Elmar Hellwig ◽  
Nicole Birgit Arweiler

This study was carried out in order to compare two PCR-based methods in the detection of Streptococcus mutans. The first PCR method was based on primers for the 16S rRNA gene and the second method was based on specific primers that targeted the glucosyltransferase gene (gtfB). Each PCR was performed with eight different streptococci from the viridans group, five other streptococci and 17 different non-streptococcal bacterial strains. Direct use of the S. mutans 16S rRNA gene-specific primers revealed that Streptococcus gordonii and Streptococcus infantis were also detected. After amplifying the 16S rRNA gene with universal primers and subsequently performing nested PCR, the S. mutans-specific nested primers based on the 16S rRNA gene detected all tested streptococci. There was no cross-reaction of the gtfB primers after direct PCR. Our results indicate that direct PCR and nested PCR based on 16S rRNA genes can reveal false-positive results for oral streptococci and lead to an overestimation of the prevalence of S. mutans with regards to its role as the most prevalent causative agent of dental caries.


Zootaxa ◽  
2012 ◽  
Vol 3356 (1) ◽  
pp. 47 ◽  
Author(s):  
GUSTAVO FERMIN ◽  
JAVIER GARCÍA-GUTIÉRREZ ◽  
MOISÉS ESCALONA ◽  
ANDRÉS MORA ◽  
AMELIA DÍAZ

Salamanders found at different localities nearby Mérida city, Venezuela, are thus far reported as Bolitoglossa orestes or B.spongai. However, morphological ambiguities among individuals from several populations of both putative species, besidestheir reported disparate geographical distributions, prompted us to clarify the specific identity of these bolitoglossines throughthe sequence analysis of their corresponding 16S rRNA genes. Seventeen specimens belonging to the vertebrates collection ofUniversidad de Los Andes (CVULA), collected at separated cloud forests in Sierra La Culata (San Eusebio, Macho Capaz andSan Javier del Valle) and Sierra Nevada de Mérida (La Mucuy), were used to extract DNA upon tissue digestion. Sequenceanalysis of the 16S rRNA gene supports a biogeographical scenario where, so far, there is only one salamander species for eachsierra: B. orestes, which is widely distributed in Sierra La Culata, and a so far undescribed species of a Venezuelan bolitogloss-ine apparently restricted to Sierra Nevada de Mérida. Based on our molecular results and an examination of morphological evidence, B. spongai should be considered a synonym of B. orestes.


1989 ◽  
Vol 35 (1) ◽  
pp. 124-133 ◽  
Author(s):  
Heesoo K. Ree ◽  
Kaiming Cao ◽  
David L. Thurlow ◽  
Robert A. Zimmermann

The complete nucleotide sequence of the 16S rRNA gene from Thermoplasma acidophilum, as well as its 5′ and 3′ flanking regions, were determined by the dideoxynucleotide chain termination method. The 16S rRNA gene encodes 1471 nucleotides. The primary and secondary structures of T. acidophilum 16S rRNA both exhibit typical archaebacterial features. The sequence appears to be more closely related to 16S rRNAs of the methanogen–halophile group than to those of the thermoacidophile group. Secondary-structure comparisons generally support this relationship, although there are several examples in which the single-stranded loops in particular helices of T. acidophilum 16S rRNA more strongly resemble their counterparts in the 16S rRNA of Sulfolobus solfataricus, a member of the thermoacidophile group. In contrast to the polycistronic rRNA operons found in most organisms, the three rRNA genes from T. acidophilum occur in only a single copy per genome and appear to be physically unlinked. Consistent with this, the 16S rRNA gene is flanked by putative promoter and terminator sequences that are comparable to the transcription control signals from other archaebacterial genes. The sequence TATATATA, which is very similar to the archaebacterial promoter consensus TTTAT/AATA, is located 18 bases before the probable site of transcription initiation, TGCACAT. There is a potential transcription termination site immediately downstream from the gene that consists of a relatively stable stem and loop structure followed by stretches of Tresidues.Key words: archaebacteria, thermoacidophile, rRNA sequence, rRNA secondary structure, promoter.


2006 ◽  
Vol 72 (7) ◽  
pp. 5077-5082 ◽  
Author(s):  
Thomas A. Auchtung ◽  
Cristina D. Takacs-Vesbach ◽  
Colleen M. Cavanaugh

ABSTRACT The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity.


2007 ◽  
Vol 57 (11) ◽  
pp. 2720-2724 ◽  
Author(s):  
Donovan P. Kelly ◽  
Yoshihito Uchino ◽  
Harald Huber ◽  
Ricardo Amils ◽  
Ann P. Wood

The published sequence of the 16S rRNA gene of Thiomonas cuprina strain Hö5 (=DSM 5495T) (GenBank accession no. U67162) was found to be erroneous. The 16S rRNA genes from the type strain held by the DSMZ since 1990 (DSM 5495T =NBRC 102145T) and strain Hö5 maintained frozen in the Universität Regensburg for 23 years (=NBRC 102094) were sequenced and found to be identical, but to show no significant similarity to the U67162 sequence. This also casts some doubt on the previously published 5S and 23S rRNA gene sequences (GenBank accession nos U67171 and X75567). The correct 16S rRNA gene sequence showed 99.8 % identity to those from Thiomonas delicata NBRC 14566T and ‘Thiomonas arsenivorans’ DSM 16361. The properties of these three species are re-evaluated, and emended descriptions are provided for the genus Thiomonas and the species Thiomonas cuprina.


2007 ◽  
Vol 73 (21) ◽  
pp. 6819-6828 ◽  
Author(s):  
John T. Wertz ◽  
John A. Breznak

ABSTRACT In termite hindguts, fermentative production of acetate—a major carbon and energy source for the insect—depends on efficient removal of inwardly diffusing oxygen by microbes residing on and near the hindgut wall. However, little is known about the identity of these organisms or about the substrate(s) used to support their respiratory activity. A cultivation-based approach was used to isolate O2-consuming organisms from hindguts of Reticulitermes flavipes. A consistently greater (albeit not statistically significant) number of colonies developed under hypoxia (2% [vol/vol] O2) than under air, and the increase coincided with the appearance of morphologically distinct colonies of a novel, rod-shaped, obligately microaerophilic β-proteobacterium that was <95% similar (based on the 16S rRNA gene sequence) to its closest known relative (Eikenella corrodens). Nearly identical organisms (and/or their 16S rRNA genes) were obtained from geographically separated and genetically distinct populations of Reticulitermes. PCR-based procedures implied that the novel isolates were autochthonous to the hindgut of R. flavipes and comprised ca. 2 to 7% of the hindgut prokaryote community. Representative strain TAM-DN1 utilized acetate and a limited range of other organic and amino acids as energy sources and possessed catalase and superoxide dismutase. On solid medium, the optimal O2 concentration for growth was about 2%, and no growth occurred with O2 concentrations above 4% or under anoxia. However, cells in liquid medium could grow with higher O2 concentrations (up to 16%), but only after proportionately extended lag phases. The genetic and physiological distinctiveness of TAM-DN1 and related strains supports their recognition as a new genus and species, for which the name Stenoxybacter acetivorans gen. nov., sp. nov. is proposed.


2003 ◽  
Vol 185 (24) ◽  
pp. 7241-7246 ◽  
Author(s):  
Leo M. Schouls ◽  
Corrie S. Schot ◽  
Jan A. Jacobs

ABSTRACT The nature in variation of the 16S rRNA gene of members of the Streptococcus anginosus group was investigated by hybridization and DNA sequencing. A collection of 708 strains was analyzed by reverse line blot hybridization. This revealed the presence of distinct reaction patterns representing 11 different hybridization groups. The 16S rRNA genes of two strains of each hybridization group were sequenced to near-completion, and the sequence data confirmed the reverse line blot hybridization results. Closer inspection of the sequences revealed mosaic-like structures, strongly suggesting horizontal transfer of segments of the 16S rRNA gene between different species belonging to the Streptococcus anginosus group. Southern blot hybridization further showed that within a single strain all copies of the 16S rRNA gene had the same composition, indicating that the apparent mosaic structures were not PCR-induced artifacts. These findings indicate that the highly conserved rRNA genes are also subject to recombination and that these events may be fixed in the population. Such recombination may lead to the construction of incorrect phylogenetic trees based on the 16S rRNA genes.


2010 ◽  
Vol 59 (9) ◽  
pp. 1037-1043 ◽  
Author(s):  
Joo-Hee Park ◽  
Tae-Sun Shim ◽  
Seung-Ae Lee ◽  
Hyungki Lee ◽  
In-Kyung Lee ◽  
...  

We investigated the molecular epidemiological features of 94 Mycobacterium intracellulare-related strains, isolated from Korean patients, using sequence analysis targeting 3 independent chronometer molecules, hsp65, the internal transcribed spacer 1 region and the 16S rRNA gene. By collective consideration of these three gene-based approaches, the 94 strains were divided into 5 groups (INT1, INT2, INT3, INT4 and INT5). The frequencies of genotype INT1, 2, 3, 4 and 5 in the 94 isolates were 57.4 % (54), 27.7 % (26), 6.4 % (6), 5.3 % (5) and 3.2 % (3), respectively. When correlations between genotypes and clinical parameters (age, sex, radiological type and the presence of a cavity) were analysed in 78 patients with non-tuberculous mycobacteria pulmonary diseases, no relationships were observed with respect to age, sex and radiological type, but genotype and the presence of a cavity tended to be related (P=0.051).


2003 ◽  
Vol 69 (2) ◽  
pp. 1004-1012 ◽  
Author(s):  
Sandrine Delorme ◽  
Laurent Philippot ◽  
Veronique Edel-Hermann ◽  
Chrystel Deulvot ◽  
Christophe Mougel ◽  
...  

ABSTRACT The diversity of the membrane-bound nitrate reductase (narG) and nitrous oxide reductase (nosZ) genes in fluorescent pseudomonads isolated from soil and rhizosphere environments was characterized together with that of the 16S rRNA gene by a PCR-restriction fragment length polymorphism assay. Fragments of 1,008 bp and 1,433 bp were amplified via PCR with primers specific for the narG and nosZ genes, respectively. The presence of the narG and nosZ genes in the bacterial strains was confirmed by hybridization of the genomic DNA and the PCR products with the corresponding probes. The ability of the strains to either reduce nitrate or totally dissimilate nitrogen was assessed. Overall, there was a good correspondence between the reductase activities and the presence of the corresponding genes. Distribution in the different ribotypes of strains harboring both the narG and nosZ genes and of strains missing both genes suggests that these two groups of strains had different evolutionary histories. Both dissimilatory genes showed high polymorphism, with similarity indexes (Jaccard) of between 0.04 and 0.8, whereas those of the 16S rRNA gene only varied from 0.77 to 0.99. No correlation between the similarity indexes of 16S rRNA and dissimilatory genes was seen, suggesting that the evolution rates of ribosomal and functional genes differ. Pairwise comparison of similarity indexes of the narG and nosZ genes led to the delineation of two types of strains. Within the first type, the similarity indexes of both genes varied in the same range, suggesting that these two genes have followed a similar evolution. Within the second type of strain, the range of variations was higher for the nosZ than for the narG gene, suggesting that these genes have had a different evolutionary rate.


Sign in / Sign up

Export Citation Format

Share Document