scholarly journals Molecular Basis for the Temperature Sensitivity of Escherichia coli pth(Ts)

2000 ◽  
Vol 182 (6) ◽  
pp. 1523-1528 ◽  
Author(s):  
L. Rogelio Cruz-Vera ◽  
Ivonne Toledo ◽  
Javier Hernández-Sánchez ◽  
Gabriel Guarneros

ABSTRACT The gene pth, encoding peptidyl-tRNA hydrolase (Pth), is essential for protein synthesis and viability of Escherichia coli. Two pth mutants have been studied in depth: apth(Ts) mutant isolated as temperature sensitive and a pth(rap) mutant selected as nonpermissive for bacteriophage λ vegetative growth. Here we show that each mutant protein is defective in a different way. The Pth(Ts) protein was very unstable in vivo, both at 43°C and at permissive temperatures, but its specific activity was comparable to that of the wild-type enzyme, Pth(wt). Conversely, the mutant Pth(rap) protein had the same stability as Pth(wt), but its specific activity was low. The thermosensitivity of the pth(Ts) mutant, presumably, ensues after Pth(Ts) protein levels are reduced at 43°C. Conditions that increased the cellular Pth(Ts) concentration, a rise in gene copy number or diminished protein degradation, allowed cell growth at a nonpermissive temperature. Antibiotic-mediated inhibition of mRNA and protein synthesis, but not of peptidyl-tRNA drop-off, reducedpth(Ts) cell viability even at a permissive temperature. Based on these results, we suggest that Pth(Ts) protein, being unstable in vivo, supports cell viability only if its concentration is maintained above a threshold that allows general protein synthesis.

Genetics ◽  
1979 ◽  
Vol 91 (2) ◽  
pp. 215-227
Author(s):  
W Scott Champney

ABSTRACT Two variations of the method of localized mutagenesis were used to introduce mutations into the 72 min region of the Escherichia coli chromosome. Twenty temperature-sensitive mutants, with linkage to markers in this region, have been examined. Each strain showed an inhibition of growth in liquid medium at 44°, and 19 of the mutants lost viability upon prolonged incubation at this temperature. A reduction in the rate of in vivo RNA and protein synthesis was observed for each mutant at 44°, relative to a control strain. Eleven of the mutants were altered in growth sensitivity or resistance to one or more of three ribosomal antibiotics. The incomplete assembly of ribosomal subunits was detected in nine strains grown at 44°. The characteristics of these mutants suggest that many of them are altered in genes for translational or transcriptional components, consistent with the clustering of these genes at this chromosomal locus.


2001 ◽  
Vol 357 (2) ◽  
pp. 417-426 ◽  
Author(s):  
Shigehiko TAMURA ◽  
Naomi MATSUMOTO ◽  
Atsushi IMAMURA ◽  
Nobuyuki SHIMOZAWA ◽  
Yasuyuki SUZUKI ◽  
...  

The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS), neonatal adrenoleucodystrophy (NALD) and infantile Refsum disease (IRD), are fatal autosomal recessive diseases caused by impaired peroxisome biogenesis, of which 12 genotypes have been reported. ZS patients manifest the severest clinical and biochemical abnormalities, whereas those with NALD and IRD show less severity and the mildest features respectively. We have reported previously that temperature-sensitive peroxisome assembly is responsible for the mildness of the clinical features of IRD. PEX1 is the causative gene for PBDs of complementation group E (CG-E, CG1 in the U.S.A. and Europe), the PBDs of highest incidence, encoding the peroxin Pex1p of the AAA ATPase family. It has been also reported that Pex1p and Pex6p interact with each other. In the present study we investigated phenotype–genotype relationships of CG1 PBDs. Pex1p from IRD such as Pex1p with the most frequently identified mutation at G843D was largely degraded in vivo at 37°C, whereas a normal level of Pex1p was detectable at the permissive temperature. In contrast, PEX1 proteins derived from ZS patients, including proteins with a mutation at L664P or the deletion of residues 634–690, were stably present at both temperatures. Pex1p-G843D interacted with Pex6p at approx. 50% of the level of normal Pex1p, whereas Pex1p from ZS patients mostly showing non-temperature-sensitive peroxisome biogenesis hardly bound to Pex6p. Taking these results together, we consider it most likely that the stability of Pex1p reflects temperature-sensitive peroxisome assembly in IRD fibroblasts. Failure in Pex1p–Pex6p interaction gives rise to more severe abnormalities, such as those manifested by patients with ZS.


2006 ◽  
Vol 50 (1) ◽  
pp. 362-364 ◽  
Author(s):  
Xilin Zhao ◽  
Muhammad Malik ◽  
Nymph Chan ◽  
Alex Drlica-Wagner ◽  
Jian-Ying Wang ◽  
...  

ABSTRACT Inhibition of DNA replication in an Escherichia coli dnaB-22 mutant failed to block quinolone-mediated lethality. Inhibition of protein synthesis by chloramphenicol inhibited nalidixic acid lethality and, to a lesser extent, ciprofloxacin lethality in both dnaB-22 and wild-type cells. Thus, major features of quinolone-mediated lethality do not depend on ongoing replication.


1982 ◽  
Vol 100 (1) ◽  
pp. 137-142
Author(s):  
Nila Oza ◽  
Sarah J. Meanock ◽  
A. G. Davies

Abstract. Groups of immature mice were injected sc with radiocarbon-labelled alpha-aminoisobutyric acid (AIB) after being given a single sc injection of hFSH or of 0.9% saline. As an index of the transport of AIB, the specific activity of isotope was measured in homogenates of testis and of liver. FSH treatment caused statistically significant increases in the specific activity of isotope in the testes and in the ratio of testicular to liver specific activity. The effect was greatest in 9-day-old mice injected with FSH 16 h before removal of the testes. Uptake of labelled AIB was not stimulated after administration of hCG or testosterone. Doses of cycloheximide sufficient to reduce the rate of protein synthesis by over 99% did not impair testicular uptake of labelled AIB or the influence of FSH on AIB uptake. These results suggest that FSH stimulates amino acid transport into cells of the immature testis and that this action is independent of the stimulatory effect of FSH on testicular protein synthesis.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Marco Coppi ◽  
Vincenzo Di Pilato ◽  
Francesco Monaco ◽  
Tommaso Giani ◽  
Pier Giulio Conaldi ◽  
...  

ABSTRACT This study reports on the characterization of two ceftazidime-avibactam (CZA)-resistant KPC-producing Klebsiella pneumoniae strains (KP-14159 and KP-8788) sequentially isolated from infections occurred in a patient never treated with CZA. Whole-genome sequencing characterization using a combined short- and long-read sequencing approach showed that both isolates belonged to the same ST258 strain, had altered outer membrane porins (a truncated OmpK35 and an Asp137Thr138 duplication in the L3 loop of OmpK36), and carried novel pKpQIL plasmid derivatives (pIT-14159 and pIT-8788, respectively) harboring two copies of the Tn4401a KPC-3-encoding transposon. Plasmid pIT-8788 was a cointegrate of pIT-14159 with a ColE replicon (that was also present in KP-14159) apparently evolved in vivo during infection. pIT-8788 was maintained at a higher copy number than pIT-14159 and, upon transfer to Escherichia coli DH10B, was able to increase the CZA MIC by 32-fold. The present findings provide novel insights about the mechanisms of acquired resistance to CZA, underscoring the role that the evolution of broadly disseminated pKpQIL plasmid derivatives may have in increasing the blaKPC gene copy number and KPC-3 expression in bacterial hosts. Although not self-transferable, similar elements, with multiple copies of Tn4401 and maintained at a high copy number, could mediate transferable CZA resistance upon mobilization.


Sign in / Sign up

Export Citation Format

Share Document