scholarly journals Targeted Disruption of the α-Amylase Gene in the Hyperthermophilic Archaeon Sulfolobus solfataricus

2003 ◽  
Vol 185 (2) ◽  
pp. 482-488 ◽  
Author(s):  
Penny Worthington ◽  
Viet Hoang ◽  
Francisco Perez-Pomares ◽  
Paul Blum

ABSTRACT Sulfolobus solfataricus secretes an acid-resistant α-amylase (amyA) during growth on starch as the sole carbon and energy source. Synthesis of this activity is subject to catabolite repression. To better understand α-amylase function and regulation, the structural gene was identified and disrupted and the resulting mutant was characterized. Internal α-amylase peptide sequences obtained by tandem mass spectroscopy were used to identify the amyA coding sequence. Anti-α-amylase antibodies raised against the purified protein immunoprecipitated secreted α-amylase activity and verified the enzymatic identity of the sequenced protein. A new gene replacement method was used to disrupt the amyA coding sequence by insertion of a modified allele of the S. solfataricus lacS gene. PCR and DNA sequence analysis were used to characterize the altered amyA locus in the recombinant strain. The amyA::lacS mutant lost the ability to grow on starch, glycogen, or pullulan as sole carbon and energy sources. During growth on a non-catabolite-repressing carbon source with added starch, the mutant produced no detectable secreted amylase activity as determined by enzyme assay, plate assay, or Western blot analysis. These results clarify the biological role of the α-amylase and provide additional methods for the directed genetic manipulation of the S. solfataricus genome.

2016 ◽  
Vol 82 (10) ◽  
pp. 3100-3108 ◽  
Author(s):  
Charlien Clauwers ◽  
Kristof Vanoirbeek ◽  
Laurence Delbrassinne ◽  
Chris W. Michiels

ABSTRACTGroup II nonproteolyticClostridium botulinum(gIICb) strains are an important concern for the safety of minimally processed ready-to-eat foods, because they can grow and produce botulinum neurotoxin during refrigerated storage. The principles of control of gIICb by conventional food processing and preservation methods have been well investigated and translated into guidelines for the food industry; in contrast, the effectiveness of emerging processing and preservation techniques has been poorly documented. The reason is that experimental studies withC. botulinumare cumbersome because of biosafety and biosecurity concerns. In the present work, we report the construction of two nontoxigenic derivatives of the type E gIICb strain NCTC 11219. In the first strain, the botulinum toxin gene (bont/E) was insertionally inactivated with a retargeted intron using the ClosTron system. In the second strain,bont/Ewas exchanged for an erythromycin resistance gene using a new gene replacement strategy that makes use ofpyrEas a bidirectional selection marker. Growth under optimal and stressed conditions, sporulation efficiency, and spore heat resistance of the mutants were unaltered, except for small differences in spore heat resistance at 70°C and in growth at 2.3% NaCl. The mutants described in this work provide a safe alternative for basic research as well as for food challenge and process validation studies with gIICb. In addition, this work expands the clostridial genetic toolbox with a new gene replacement method that can be applied to replace any gene in gIICb and other clostridia.IMPORTANCEThe nontoxigenic mutants described in this work provide a safe alternative for basic research as well as for food challenge and process validation studies with psychrotrophicClostridium botulinum. In addition, this work expands the clostridial genetic toolbox with a new gene replacement method that can be applied to replace any gene in clostridia.


Author(s):  
A.J. Mia ◽  
L.X. Oakford ◽  
T. Yorio

Protein kinase C (PKC) isozymes, when activated, are translocated to particulate membrane fractions for transport to the apical membrane surface in a variety of cell types. Evidence of PKC translocation was demonstrated in human megakaryoblastic leukemic cells, and in cardiac myocytes and fibroblasts, using FTTC immunofluorescent antibody labeling techniques. Recently, we reported immunogold localizations of PKC subtypes I and II in toad urinary bladder epithelia, following 60 min stimulation with Mezerein (MZ), a PKC activator, or antidiuretic hormone (ADH). Localization of isozyme subtypes I and n was carried out in separate grids using specific monoclonal antibodies with subsequent labeling with 20nm protein A-gold probes. Each PKC subtype was found to be distributed singularly and in discrete isolated patches in the cytosol as well as in the apical membrane domains. To determine if the PKC isozymes co-localized within the cell, a double immunogold labeling technique using single grids was utilized.


Genetics ◽  
1983 ◽  
Vol 103 (4) ◽  
pp. 675-689
Author(s):  
Jeffrey R Powell ◽  
Marko Andjelković

ABSTRACT Two polymorphic systems impinging on α-amylase in Drosophila pseudoobscura have been studied in laboratory populations maintained on medium in which the only carbohydrate source was starch (the substrate of amylase) and replicas maintained on medium in which the only carbohydrate source was maltose (the product of amylase). The two polymorphic systems were alleles at the structural gene (Amy) coding for the enzyme (allozymes) and variation in the tissue-specific expression along the adult midgut controlled by several genes. In the seven populations on maltose medium little consistent change was noted in either system. In the seven populations on starch medium, both polymorphisms exhibited selective changes. A midgut pattern of very limited expression of amylase rose in frequency in all starch populations, as did the frequency of the "fast" (1.00) Amy allele. The overall specific amylase activity did not differ between starch-adapted and maltose-adapted flies.—The results, along with previous studies, indicate that when a gene-enzyme system is specifically stressed in laboratory populations, allozymes often exhibit selective differences. Such results make the selectionist hypothesis at least tenable. Furthermore, the fact that both types of polymorphisms responded to selection indicates the role of structural gene vs. gene regulation changes in adaptive evolution is not an either/or question but one of relative roles and interactions.


2019 ◽  
Vol 128 (06/07) ◽  
pp. 388-394
Author(s):  
Helge Müller-Fielitz ◽  
Markus Schwaninger

AbstractThyroid hormone (TH) regulation is important for development, energy homeostasis, heart function, and bone formation. To control the effects of TH in target organs, the hypothalamus-pituitary-thyroid (HPT) axis and the tissue-specific availability of TH are highly regulated by negative feedback. To exert a central feedback, TH must enter the brain via specific transport mechanisms and cross the blood-brain barrier. Here, tanycytes, which are located in the ventral walls of the 3rd ventricle in the mediobasal hypothalamus (MBH), function as gatekeepers. Tanycytes are able to transport, sense, and modify the release of hormones of the HPT axis and are involved in feedback regulation. In this review, we focus on the relevance of tanycytes in thyrotropin-releasing hormone (TRH) release and review available genetic tools to investigate the physiological functions of these cells.


2002 ◽  
Vol 184 (4) ◽  
pp. 889-894 ◽  
Author(s):  
Yi Wei ◽  
David H. Bechhofer

ABSTRACT The tet(L) gene of Bacillus subtilis confers low-level tetracycline (Tc) resistance. Previous work examining the >20-fold-inducible expression of tet(L) by Tc demonstrated a 12-fold translational induction. Here we show that the other component of tet(L) induction is at the level of mRNA stabilization. Addition of a subinhibitory concentration of Tc results in a two- to threefold increase in tet(L) mRNA stability. Using a plasmid-borne derivative of tet(L) with a large in-frame deletion of the coding sequence, the mechanism of Tc-induced stability was explored by measuring the decay of tet(L) mRNAs carrying specific mutations in the leader region. The results of these experiments, as well as experiments with a B. subtilis strain that is resistant to Tc due to a mutation in the ribosomal S10 protein, suggest different mechanisms for the effects of Tc on translation and on mRNA stability. The key role of the 5" end in determining mRNA stability was confirmed in these experiments. Surprisingly, the stability of several other B. subtilis mRNAs was also induced by Tc, which indicates that addition of Tc may result in a general stabilization of mRNA.


Sign in / Sign up

Export Citation Format

Share Document