scholarly journals MtaR, a Regulator of Methionine Transport, Is Critical for Survival of Group B Streptococcus In Vivo

2003 ◽  
Vol 185 (22) ◽  
pp. 6592-6599 ◽  
Author(s):  
Daniel Shelver ◽  
Lakshmi Rajagopal ◽  
Theresa O. Harris ◽  
Craig E. Rubens

ABSTRACT The group B streptococcus (GBS) is an important human pathogen that infects newborns as well as adults. GBS also provides a model system for studying adaptation to different host environments due to its ability to survive in a variety of sites within the host. In this study, we have characterized a transcription factor, MtaR, that is essential for the ability of GBS to survive in vivo. An isogenic strain bearing a kanamycin insertion in mtaR was attenuated for survival in a neonatal-rat model of sepsis. The mtaR mutant grew poorly in human plasma, suggesting that its utilization of plasma-derived nutrients was inefficient. When an excess of exogenous methionine (200 μg/ml) was provided to the mtaR mutant, its growth rate in plasma was restored to that of the wild-type strain. The mtaR mutant grew poorly in chemically defined medium (CDM) prepared with methionine at a concentration similar to that of plasma (4 μg/ml) but was able to grow normally in CDM prepared with a high concentration of methionine (400 μg/ml). Both the wild-type strain and the mtaR mutant were incapable of growth in CDM lacking methionine, indicating that GBS cannot synthesize methionine de novo. When the abilities of the strains to incorporate radiolabeled methionine were compared, the mtaR mutant incorporated fivefold less methionine than the wild-type strain during a 10-min period. Collectively, the results from this study suggest that the ability to regulate expression of a methionine transport system is critical for GBS survival in vivo.

2018 ◽  
Author(s):  
Ying Yang ◽  
Mingjing Luo ◽  
Haokui ◽  
Carmen Li ◽  
Alison W. S. Luk ◽  
...  

AbstractThe hypervirulent Group B Streptococcus (Streptococcus agalactiae, GBS) serogroup III clonal cluster 17 has been associated with neonatal GBS invasive disease and meningits. Serogroup III, ST283 has recently been implicated in invasive disease among non-pregnant adults in Asia. These strains cluster with strains from freshwater fishes from aquaculture and a foodborne outbreak of sepsis, especially with septic arthritis, had been linked to such consumption in Singapore in 2015. Through comparative genome analyses of invasive and non-invasive strains of ST283, we identified a truncated response regulator gene in the non-invasive strain. This two component response gene, previously named a DNA binding regulator, is conserved among GBS strains and is a homologue ofBacillus subtilis BceR, the response regulator of the BceRSAB system. Loss of function of theBceRresponse gene in the invasive GBS strain demonstrated bacitracin susceptibility inΔBceRmutant with MICs of 256-fold and four-fold reduction in bacitracin and human cathelicin LL-37 compared to wild type and complementation strains. Upregulation ofdltAof wild type strain vsΔBceRmutant was demonstrated (p<0.0001), and was previously shown inStaphylococcus aureusto resist and repel cationic peptides through excess positive charges with D-alanylation of teichoic acids on the cell wall. In addition,ΔBceRmutant was less susceptible under oxidative stress under H2O2stress when compared to wild type strain (p<0.001) and inhibited biofilm formation (p<0.05 andp< 0.0001 for crystal violet staining and cfu counts). TheΔBceRmutant also showed reduced mortality as compared to wild type strain (p<0.01) in a murine infection model. Taken together,BceRSis involved in bacitracin and antimicrobial peptide resistance, survival under oxidative stress, biofilm formation and play an important role in the virulence of GBS.Author SummaryTwo-component systems (TCSs) play an important role in virulence in bacteria, and are involved in detecting environmental changes. AlthoughS. agalactiaewas reported to contain more predicted TCSs thanStreptococcus pneumoniae,few have been studied in detail. In this work, comparative genomic analysis of GBS invasive (hyper-virulent) and non-invasive serotype III-4 strains were performed to determine any gene differences that may account for severity of disease in humans.BceR-likeTCS was selected and suspected to be involved in virulence, and thusBceRwas deleted in a hyper-virulent GBS serotype III-4 strain. We demonstrated that thisBceR-likeTCS is involved in GBS virulence and induced proinflammatory host immune responses. Our study of TCSBceRmay guide further research into the role of other TCSs in GBS pathogenicity, and further explore therapeutic targets for GBS disease.


2006 ◽  
Vol 188 (16) ◽  
pp. 5984-5992 ◽  
Author(s):  
Birgit Gottschalk ◽  
Gerd Bröker ◽  
Melanie Kuhn ◽  
Simone Aymanns ◽  
Ute Gleich-Theurer ◽  
...  

ABSTRACT Streptococcus agalactiae (group B streptococcus [GBS]) causes neonatal sepsis, pneumonia, and meningitis, as well as infections of the bovine udder. The S. agalactiae hemolysin is regarded as an important virulence factor, and hemolysin expression is dependent on the cyl gene cluster. cylA and cylB encode the ATP binding and transmembrane domains of a typical ATP binding cassette (ABC) transporter. The deduced proteins contain the signature sequence of a multidrug resistance (MDR) transporter, and mutation of the genes results in a nonhemolytic and nonpigmented phenotype. To further elucidate the function of the putative transporter, nonpolar deletion mutants of cylA were constructed. These mutants are nonhemolytic and can be complemented by the transporter genes. Wild-type strain and nonhemolytic cylA and cylK deletion mutants were exposed to known substrates of MDR transporters. Mutation of cylA significantly impaired growth in the presence of daunorubicin, doxorubicin, and rhodamine 6G and resulted in a decreased export of doxorubicin from the cells. The mutation of cylK, a gene of unknown function located downstream from cylA, caused a loss of hemolysis but had no effect on the transport of MDR substrates. Furthermore, the hemolytic activity of the wild-type strain was inhibited by reserpine in a dose-dependent manner. We conclude that CylAB closely resembles an ABC-type MDR transporter and propose that the GBS hemolysin molecule represents a natural substrate of the transporter.


2013 ◽  
Vol 58 (3) ◽  
pp. 1671-1677 ◽  
Author(s):  
Dora E. Wiskirchen ◽  
Patrice Nordmann ◽  
Jared L. Crandon ◽  
David P. Nicolau

ABSTRACTDoripenem and ertapenem have demonstrated efficacy against several NDM-1-producing isolatesin vivo, despite having high MICs. In this study, we sought to further characterize the efficacy profiles of humanized regimens of standard (500 mg given every 8 h) and high-dose, prolonged infusion of doripenem (2 g given every 8 h, 4-h infusion) and 1 g of ertapenem given intravenously every 24 h and the comparator regimens of ceftazidime at 2 g given every 8 h (2-h infusion), levofloxacin at 500 mg every 24 h, and aztreonam at 2 g every 6 h (1-h infusion) against a wider range of isolates in a murine thigh infection model. An isogenic wild-type strain and NDM-1-producingKlebsiella pneumoniaeand eight clinical NDM-1-producing members of the familyEnterobacteriaceaewere tested in immunocompetent- and neutropenic-mouse models. The wild-type strain was susceptible to all of the agents, while the isogenic NDM-1-producing strain was resistant to ceftazidime, doripenem, and ertapenem. Clinical NDM-1-producing strains were resistant to nearly all five of the agents (two were susceptible to levofloxacin). In immunocompetent mice, all of the agents produced ≥1-log10CFU reductions of the isogenic wild-type and NDM-1-producing strains after 24 h. Minimal efficacy of ceftazidime, aztreonam, and levofloxacin against the clinical NDM-1-producing strains was observed. However, despitein vitroresistance, ≥1-log10CFU reductions of six of eight clinical strains were achieved with high-dose, prolonged infusion of doripenem and ertapenem. Slight enhancements of doripenem activity over the standard doses were obtained with high-dose, prolonged infusion for three of the four isolates tested. Similar efficacy observations were noted in neutropenic mice. These data suggest that carbapenems are a viable treatment option for infections caused by NDM-1-producingEnterobacteriaceae.


2013 ◽  
Vol 79 (15) ◽  
pp. 4586-4594 ◽  
Author(s):  
Masato Ikeda ◽  
Aya Miyamoto ◽  
Sumire Mutoh ◽  
Yuko Kitano ◽  
Mei Tajima ◽  
...  

ABSTRACTTo develop the infrastructure for biotin production through naturally biotin-auxotrophicCorynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribedbioBFgenes ofEscherichia coliwere introduced into theC. glutamicumgenome, which originally lacked thebioFgene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), thebioIgene ofBacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of thede novosynthesis of biotin. On the other hand, thebioYgene responsible for biotin uptake was disrupted in wild-typeC. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, thebioYdisruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioYstrain showed a similar high requirement for the precursor dethiobiotin, a substrate forbioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, thebioBgene was further disrupted in both the wild-type strain and the ΔbioYstrain. By selectively using the resulting two strains (ΔbioBand ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph ofC. glutamicumproduced biotin directly from glucose, albeit at a marginally detectable level (approximately 0.3 μg per liter).


2011 ◽  
Vol 77 (17) ◽  
pp. 6020-6026 ◽  
Author(s):  
Ingemar Nærdal ◽  
Roman Netzer ◽  
Trond E. Ellingsen ◽  
Trygve Brautaset

ABSTRACTWe investigated the regulation and roles of six aspartate pathway genes inl-lysine overproduction inBacillus methanolicus:dapG, encoding aspartokinase I (AKI);lysC, encoding AKII;yclM, encoding AKIII;asd, encoding aspartate semialdehyde dehydrogenase;dapA, encoding dihydrodipicolinate synthase; andlysA, encodingmeso-diaminopimelate decarboxylase. Analysis of the wild-type strain revealed thatin vivo lysCtranscription was repressed 5-fold byl-lysine and induced 2-fold bydl-methionine added to the growth medium. Surprisingly,yclMtranscription was repressed 5-fold bydl-methionine, while thedapG,asd,dapA, andlysAgenes were not significantly repressed by any of the aspartate pathway amino acids. We show that thel-lysine-overproducing classicalB. methanolicusmutant NOA2#13A52-8A66 has—in addition to ahom-1mutation—chromosomal mutations in thedapGcoding region and in thelysApromoter region. No mutations were found in itsdapA,lysC,asd, andyclMgenes. The mutantdapGgene product had abolished feedback inhibition bymeso-diaminopimelatein vitro, and thelysAmutation was accompanied by an elevated (6-fold)lysAtranscription levelin vivo. Moreover,yclMtranscription was increased 16-fold in mutant strain NOA2#13A52-8A66 compared to the wild-type strain. Overexpression of wild-type and mutant aspartate pathway genes demonstrated that all six genes are important forl-lysine overproduction as tested in shake flasks, and the effects were dependent on the genetic background tested. Coupled overexpression of up to three genes resulted in additive (above 80-fold) increasedl-lysine production levels.


2006 ◽  
Vol 72 (1) ◽  
pp. 760-768 ◽  
Author(s):  
Keri Wang ◽  
Kenneth Conn ◽  
George Lazarovits

ABSTRACT Burkholderia sp. strain PsJN stimulates root growth of potato explants compared to uninoculated controls under gnotobiotic conditions. In order to determine the mechanism by which this growth stimulation occurs, we used Tn5 mutagenesis to produce a mutant, H41, which exhibited no growth-promoting activity but was able to colonize potato plants as well as the wild-type strain. The gene associated with the loss of growth promotion in H41 was shown to exhibit 65% identity at the amino acid level to the nadC gene encoding quinolinate phosphoribosyltransferase (QAPRTase) in Ralstonia solanacearum. Complementation of H41 with QAPRTase restored growth promotion of potato explants by this mutant. Expression of the gene identified in Escherichia coli yielded a protein with QAPRTase activities that catalyzed the de novo formation of nicotinic acid mononucleotide (NaMN). Two other genes involved in the same enzymatic pathway, nadA and nadB, were physically linked to nadC. The nadA gene was cotranscribed with nadC as an operon in wild-type strain PsJN, while the nadB gene was located downstream of the nadA-nadC operon. Growth promotion by H41 was fully restored by addition of NaMN to the tissue culture medium. These data suggested that QAPRTase may play a role in the signal pathway for promotion of plant growth by PsJN.


2012 ◽  
Vol 80 (8) ◽  
pp. 2589-2600 ◽  
Author(s):  
Susan R. Steyert ◽  
James B. Kaper

ABSTRACTShiga toxin-producingEscherichia coli(STEC) is a food-borne pathogen with a low infectious dose that colonizes the colon in humans and can cause severe clinical manifestations such as hemolytic-uremic syndrome. The urease enzyme, encoded in the STEC chromosome, has been demonstrated to act as a virulence factor in other bacterial pathogens. The NH3produced as urease hydrolyzes urea can aid in buffering bacteria in acidic environments as well as provide an easily assimilated source of nitrogen that bacteria can use to gain a metabolic advantage over intact microflora. Here, we explore the role of urease in STEC pathogenicity. The STEC urease enzyme exhibited maximum activity near neutral pH and during the stationary-growth phase. Experiments altering growth conditions performed with three phylogenetically distinct urease-positive strains demonstrated that the STECuregene cluster is inducible by neither urea nor pH but does respond to nitrogen availability. Quantitative reverse transcription-PCR (qRT-PCR) data indicate that nitrogen inhibits the transcriptional response. The deletion of theuregene locus was constructed in STEC strain 88-0643, and theuremutant was used with the wild-type strain in competition experiments in mouse models to examine the contribution of urease. The wild-type strain was twice as likely to survive passage through the acidic stomach and demonstrated an enhanced ability to colonize the intestinal tract compared to theuremutant strain. Thesein vivoexperiments reveal that, although the benefit STEC gains from urease expression is modest and not absolutely required for colonization, urease can contribute to the pathogenicity of STEC.


2006 ◽  
Vol 188 (17) ◽  
pp. 6269-6276 ◽  
Author(s):  
Sofiane Ghorbel ◽  
Aleksey Smirnov ◽  
Hichem Chouayekh ◽  
Brice Sperandio ◽  
Catherine Esnault ◽  
...  

ABSTRACT The ppk gene of Streptomyces lividans encodes an enzyme catalyzing, in vitro, the reversible polymerization of the γ phosphate of ATP into polyphosphate and was previously shown to play a negative role in the control of antibiotic biosynthesis (H. Chouayekh and M. J. Virolle, Mol. Microbiol. 43:919-930, 2002). In the present work, some regulatory features of the expression of ppk were established and the polyphosphate content of S. lividans TK24 and the ppk mutant was determined. In Pi sufficiency, the expression of ppk was shown to be low but detectable. DNA gel shift experiments suggested that ppk expression might be controlled by a repressor using ATP as a corepressor. Under these conditions, short acid-soluble polyphosphates accumulated upon entry into the stationary phase in the wild-type strain but not in the ppk mutant strain. The expression of ppk under Pi-limiting conditions was shown to be much higher than that under Pi-sufficient conditions and was under positive control of the two-component system PhoR/PhoP. Under these conditions, the polyphosphate content of the cell was low and polyphosphates were reproducibly found to be longer and more abundant in the ppk mutant strain than in the wild-type strain, suggesting that Ppk might act as a nucleoside diphosphate kinase. In light of our results, a novel view of the role of this enzyme in the regulation of antibiotic biosynthesis in S. lividans TK24 is proposed.


2021 ◽  
Author(s):  
Yu Zhang ◽  
Aijing Liu ◽  
Yanan Wang ◽  
Hongyu Cui ◽  
Yulong Gao ◽  
...  

Since 2015, severe hydropericardium-hepatitis syndrome (HHS) associated with a novel fowl adenovirus 4 (FAdV-4) has emerged in China, representing a new challenge for the poultry industry. Although various highly pathogenic FAdV-4 strains have been isolated, the virulence factor and the pathogenesis of novel FAdV-4 are unclear. In our previous studies, we reported that a large genomic deletion (1966 bp) is not related to increased virulence. In this study, two recombinant chimeric viruses, rHN20 strain and rFB2 strain, were generated from a highly pathogenic FAdV-4 strain by replacing hexon or fiber-2 gene of a non-pathogenic FAdV-4, respectively. Both chimeric strains showed similar titers to the wild type strain in vitro . Notably, rFB2 and the wild type strain induced 100% mortality, while no mortality or clinical signs appeared in chickens inoculated with rHN20, indicating that hexon, but not fiber-2, determines the novel FAdV-4 virulence. Furthermore, an R188I mutation in the hexon protein identified residue 188 as the key amino acid for the reduced pathogenicity. The rR188I mutant strain was significantly neutralized by chicken serum in vitro and in vivo , whereas the wild type strain was able to replicate efficiently. Finally, the immunogenicity of the rescued rR188I was investigated. Non-pathogenic rR188I provided full protection against lethal FAdV-4 challenge. Collectively, these findings provide an in-depth understanding of the molecular basis of novel FAdV-4 pathogenicity and present rR188I as a potential live attenuated vaccine candidate or a novel vaccine vector for HHS vaccines. Importance HHS associated with a novel FAdV-4 infection in chickens has caused huge economic losses to the poultry industry in China since 2015. The molecular basis for the increased virulence remains largely unknown. Here, we demonstrate that the hexon gene is vital for FAdV-4 pathogenicity. Furthermore, we show that the amino acid residue at position 188 of the hexon protein is responsible for pathogenicity. Importantly, the rR188I mutant strain was neutralized by chicken serum in vitro and in vivo , whereas the wild type strain was not. Further, the rR188I mutant strain provided complete protection against FAdV-4 challenge. Our results provide a molecular basis of the increased virulence of novel FAdV-4. We propose that the rR188I mutant is a potential live attenuated vaccine against HHS and a new vaccine vector for HHS-combined vaccines.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Lei Zhu ◽  
Qi Zou ◽  
Xinyun Cao ◽  
John E. Cronan

ABSTRACTAcyl carrier proteins (ACPs) play essential roles in the synthesis of fatty acids and transfer of long fatty acyl chains into complex lipids. TheEnterococcus faecalisgenome contains two annotatedacpgenes, calledacpAandacpB. AcpA is encoded within the fatty acid synthesis (fab) operon and appears essential. In contrast, AcpB is an atypical ACP, having only 30% residue identity with AcpA, and is not essential. Deletion ofacpBhas no effect onE. faecalisgrowth orde novofatty acid synthesis in media lacking fatty acids. However, unlike the wild-type strain, where growth with oleic acid resulted in almost complete blockage ofde novofatty acid synthesis, theΔacpBstrain largely continuedde novofatty acid synthesis under these conditions. Blockage in the wild-type strain is due to repression offaboperon transcription, leading to levels of fatty acid synthetic proteins (including AcpA) that are insufficient to supportde novosynthesis. Transcription of thefaboperon is regulated by FabT, a repressor protein that binds DNA only when it is bound to an acyl-ACP ligand. Since AcpA is encoded in thefaboperon, its synthesis is blocked when the operon is repressed andacpAthus cannot provide a stable supply of ACP for synthesis of the acyl-ACP ligand required for DNA binding by FabT. In contrast to AcpA,acpBtranscription is unaffected by growth with exogenous fatty acids and thus provides a stable supply of ACP for conversion to the acyl-ACP ligand required for repression by FabT. Indeed,ΔacpBandΔfabTstrains have essentially the samede novofatty acid synthesis phenotype in oleic acid-grown cultures, which argues that neither strain can form the FabT-acyl-ACP repression complex. Finally, acylated derivatives of both AcpB and AcpA were substrates for theE. faecalisenoyl-ACP reductases and forE. faecalisPlsX (acyl-ACP; phosphate acyltransferase).IMPORTANCEAcpB homologs are encoded by many, but not all, lactic acid bacteria (Lactobacillales), including many members of the human microbiome. The mechanisms regulating fatty acid synthesis by exogenous fatty acids play a key role in resistance of these bacteria to those antimicrobials targeted at fatty acid synthesis enzymes. Defective regulation can increase resistance to such inhibitors and also reduce pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document