scholarly journals Evidence that the algI/algJ Gene Cassette, Required for O Acetylation of Pseudomonas aeruginosa Alginate, Evolved by Lateral Gene Transfer

2004 ◽  
Vol 186 (14) ◽  
pp. 4759-4773 ◽  
Author(s):  
Michael J. Franklin ◽  
Stephanie A. Douthit ◽  
Marcella A. McClure

ABSTRACT Pseudomonas aeruginosa strains, isolated from chronically infected patients with cystic fibrosis, produce the O-acetylated extracellular polysaccharide, alginate, giving these strains a mucoid phenotype. O acetylation of alginate plays an important role in the ability of mucoid P. aeruginosa to form biofilms and to resist complement-mediated phagocytosis. The O-acetylation process is complex, requiring a protein with seven transmembrane domains (AlgI), a type II membrane protein (AlgJ), and a periplasmic protein (AlgF). The cellular localization of these proteins suggests a model wherein alginate is modified at the polymer level after the transport of O-acetyl groups to the periplasm. Here, we demonstrate that this mechanism for polysaccharide esterification may be common among bacteria, since AlgI homologs linked to type II membrane proteins are found in a variety of gram-positive and gram-negative bacteria. In some cases, genes for these homologs have been incorporated into polysaccharide biosynthetic operons other than for alginate biosynthesis. The phylogenies of AlgI do not correlate with the phylogeny of the host bacteria, based on 16S rRNA analysis. The algI homologs and the gene for their adjacent type II membrane protein present a mosaic pattern of gene arrangement, suggesting that individual components of the multigene cassette, as well as the entire cassette, evolved by lateral gene transfer. AlgJ and the other type II membrane proteins, although more diverged than AlgI, contain conserved motifs, including a motif surrounding a highly conserved histidine residue, which is required for alginate O-acetylation activity by AlgJ. The AlgI homologs also contain an ordered series of motifs that included conserved amino acid residues in the cytoplasmic domain CD-4; the transmembrane domains TM-C, TM-D, and TM-E; and the periplasmic domain PD-3. Site-directed mutagenesis studies were used to identify amino acids important for alginate O-acetylation activity, including those likely required for (i) the interaction of AlgI with the O-acetyl precursor in the cytoplasm, (ii) the export of the O-acetyl group across the cytoplasmic membrane, and (iii) the transfer of the O-acetyl group to a periplasmic protein or to alginate. These results indicate that AlgI belongs to a family of membrane proteins required for modification of polysaccharides and that a mechanism requiring an AlgI homolog and a type II membrane protein has evolved by lateral gene transfer for the esterification of many bacterial extracellular polysaccharides.

2019 ◽  
Vol 476 (21) ◽  
pp. 3241-3260
Author(s):  
Sindhu Wisesa ◽  
Yasunori Yamamoto ◽  
Toshiaki Sakisaka

The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.


Yeast ◽  
1994 ◽  
Vol 10 (8) ◽  
pp. 1111-1115 ◽  
Author(s):  
Pedro A. Romero ◽  
Ariadni Athanassiadis ◽  
Marc Lussier ◽  
Annette Herscovics

2005 ◽  
Vol 92 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Louise Wickham ◽  
Suzanne Benjannet ◽  
Edwige Marcinkiewicz ◽  
Michel Chretien ◽  
Nabil G. Seidah

1997 ◽  
Vol 246 (3) ◽  
pp. 681-689 ◽  
Author(s):  
Erhard Bieberich ◽  
Kornelia Treml ◽  
Christof Volker ◽  
Andreas Rolfs ◽  
Burga Kalz-Fuller ◽  
...  

2013 ◽  
Vol 288 (23) ◽  
pp. 16295-16307 ◽  
Author(s):  
Ilie Sachelaru ◽  
Narcis Adrian Petriman ◽  
Renuka Kudva ◽  
Patrick Kuhn ◽  
Thomas Welte ◽  
...  

Most membrane proteins are co-translationally inserted into the lipid bilayer via the universally conserved SecY complex and they access the lipid phase presumably via a lateral gate in SecY. In bacteria, the lipid transfer of membrane proteins from the SecY channel is assisted by the SecY-associated protein YidC, but details on the SecY-YidC interaction are unknown. By employing an in vivo and in vitro site-directed cross-linking approach, we have mapped the SecY-YidC interface and found YidC in contact with all four transmembrane domains of the lateral gate. This interaction did not require the SecDFYajC complex and was not influenced by SecA binding to SecY. In contrast, ribosomes dissociated the YidC contacts to lateral gate helices 2b and 8. The major contact between YidC and the lateral gate was lost in the presence of ribosome nascent chains and new SecY-YidC contacts appeared. These data demonstrate that the SecY-YidC interaction is influenced by nascent-membrane-induced lateral gate movements.


2018 ◽  
Vol 293 (16) ◽  
pp. 6022-6038 ◽  
Author(s):  
Christine C. Yokoyama ◽  
Megan T. Baldridge ◽  
Daisy W. Leung ◽  
Guoyan Zhao ◽  
Chandni Desai ◽  
...  

2021 ◽  
pp. 101299
Author(s):  
Neeraj Sharma ◽  
Chaitanya Patel ◽  
Marina Shenkman ◽  
Amit Kessel ◽  
Nir Ben-Tal ◽  
...  

2000 ◽  
Vol 81 (10) ◽  
pp. 2397-2405 ◽  
Author(s):  
C. Shiba ◽  
T. Daikoku ◽  
F. Goshima ◽  
H. Takakuwa ◽  
Y. Yamauchi ◽  
...  

The UL34 gene of herpes simplex virus type 2 (HSV-2) is highly conserved in the herpesvirus family. The UL34 gene product was identified In lysates of HSV-2-infected cells as protein species with molecular masses of 31 and 32·5 kDa, the latter being a phosphorylated product. Synthesis of these proteins occurred at late times post-infection and was highly dependent on viral DNA synthesis. Immunofluorescence assays revealed that the UL34 protein was localized in the cytoplasm in a continuous net-like structure, closely resembling the staining pattern of the endoplasmic reticulum (ER), in both HSV-2-infected cells and in cells transiently expressing UL34 protein. Deletion mutant analysis showed that this colocalization required the C terminus of the UL34 protein. The UL34 protein associated with virions but not with A, B or C capsids. We treated virions, HSV-2-infected cells and cells expressing the UL34 protein with a protease in order to examine the topology of the UL34 protein. In addition, we constructed UL34 deletion mutant proteins and examined their intracellular localization. Our data strongly support the hypothesis that the UL34 protein is inserted into the viral envelope as a tail-anchored type II membrane protein and is significant for virus envelopment.


2013 ◽  
Vol 126 (23) ◽  
pp. 5344-5349 ◽  
Author(s):  
R. Quiroga ◽  
A. Trenchi ◽  
A. Gonzalez Montoro ◽  
J. Valdez Taubas ◽  
H. J. F. Maccioni

Sign in / Sign up

Export Citation Format

Share Document