scholarly journals Crystallographic Comparison of Manganese- and Iron-Dependent Homoprotocatechuate 2,3-Dioxygenases

2004 ◽  
Vol 186 (7) ◽  
pp. 1945-1958 ◽  
Author(s):  
Matthew W. Vetting ◽  
Lawrence P. Wackett ◽  
Lawrence Que ◽  
John D. Lipscomb ◽  
Douglas H. Ohlendorf

ABSTRACT The X-ray crystal structures of homoprotocatechuate 2,3-dioxygenases isolated from Arthrobacter globiformis and Brevibacterium fuscum have been determined to high resolution. These enzymes exhibit 83% sequence identity, yet their activities depend on different transition metals, Mn2+ and Fe2+, respectively. The structures allow the origins of metal ion selectivity and aspects of the molecular mechanism to be examined in detail. The homotetrameric enzymes belong to the type I family of extradiol dioxygenases (vicinal oxygen chelate superfamily); each monomer has four βαβββ modules forming two structurally homologous N-terminal and C-terminal barrel-shaped domains. The active-site metal is located in the C-terminal barrel and is ligated by two equatorial ligands, H214NE1 and E267OE1; one axial ligand, H155NE1; and two to three water molecules. The first and second coordination spheres of these enzymes are virtually identical (root mean square difference over all atoms, 0.19 Å), suggesting that the metal selectivity must be due to changes at a significant distance from the metal and/or changes that occur during folding. The substrate (2,3-dihydroxyphenylacetate [HPCA]) chelates the metal asymmetrically at sites trans to the two imidazole ligands and interacts with a unique, mobile C-terminal loop. The loop closes over the bound substrate, presumably to seal the active site as the oxygen activation process commences. An “open” coordination site trans to E267 is the likely binding site for O2. The geometry of the enzyme-substrate complexes suggests that if a transiently formed metal-superoxide complex attacks the substrate without dissociation from the metal, it must do so at the C-3 position. Second-sphere active-site residues that are positioned to interact with the HPCA and/or bound O2 during catalysis are identified and discussed in the context of current mechanistic hypotheses.

mSystems ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Chandni Sidhu ◽  
Vipul Solanki ◽  
Anil Kumar Pinnaka ◽  
Krishan Gopal Thakur

ABSTRACT The release of synthetic chemical pollutants in the environment is posing serious health risks. Enzymes, including oxygenases, play a crucial role in xenobiotic degradation. In the present study, we employed a functional metagenomics approach to overcome the limitation of cultivability of microbes under standard laboratory conditions in order to isolate novel dioxygenases capable of degrading recalcitrant pollutants. Fosmid clones possessing dioxygenase activity were further sequenced, and their genes were identified using bioinformatics tools. Two positive fosmid clones, SD3 and RW1, suggested the presence of 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC-SD3) and catechol 2,3-dioxygenase (C23O-RW1), respectively. Recombinant versions of these enzymes were purified to examine their pollutant-degrading abilities. The crystal structure of BphC-SD3 was determined at 2.6-Å resolution, revealing a two-domain architecture, i.e., N-terminal and C-terminal domains, with the sequential arrangement of βαβββ in each domain, characteristic of Fe-dependent class II type I extradiol dioxygenases. The structure also reveals the presence of conserved amino acids lining the catalytic pocket and Fe3+ metal ion in the large funnel-shaped active site in the C-terminal domain. Further studies suggest that Fe3+ bound in the BphC-SD3 active site probably imparts aerobic stability. We further demonstrate the potential application of BphC-SD3 in biosensing of catecholic compounds. The halotolerant and oxygen-resistant properties of these enzymes reported in this study make them potential candidates for bioremediation and biosensing applications. IMPORTANCE The disposal and degradation of xenobiotic compounds have been serious issues due to their recalcitrant properties. Microbial oxygenases are the fundamental enzymes involved in biodegradation that oxidize the substrate by transferring oxygen from molecular oxygen. Among oxygenases, catechol dioxygenases are more versatile in biodegradation and are well studied among the bacterial world. The use of catechol dioxygenases in the field is currently not practical due to their aerobically unstable nature. The significance of our research lies in the discovery of aerobically stable and halotolerant catechol dioxygenases that are efficient in degrading the targeted environmental pollutants and, hence, could be used as cost-effective alternatives for the treatment of hypersaline industrial effluents. Moreover, the structural determination of novel catechol dioxygenases would greatly enhance our knowledge of the function of these enzymes and facilitate directed evolution to further enhance or engineer desired properties.


ChemInform ◽  
1987 ◽  
Vol 18 (9) ◽  
Author(s):  
K. V. DAMU ◽  
M. S. SHAIKJEE ◽  
J. P. MICHAEL ◽  
A. S. HOWARD ◽  
R. D. HANCOCK

2006 ◽  
Vol 05 (3) ◽  
pp. 21-30
Author(s):  
Denise Alves FUNGARO ◽  
Juliana de Carvalho IZIDORO

The capacity of synthesized zeolites from Brazilian coal ash for the removal of metal ions from aqueous solutions has been investigated. Equilibrium data obtained have been found to fit both the Langmuir and Freundlich adsorption isotherms. The zeolitic material prepared with coal ash from baghouse filter showed the highest removal efficiencies. The metal ion selectivity of this product was determined as: Pb2+ > Cd2+ > Cu2+ > Zn2+ > Ni2+. The maximum cation exchange capacities were between 32.9 and 246.9 mg g-1. Tests showed that the zeolitic material was suitable for removal of zinc from electroplating effluent.


2011 ◽  
Vol 92 (7) ◽  
pp. 1607-1616 ◽  
Author(s):  
Ji-Hye Lee ◽  
Intekhab Alam ◽  
Kang Rok Han ◽  
Sunyoung Cho ◽  
Sungho Shin ◽  
...  

Norovirus is one of the leading agents of gastroenteritis and is a major public health concern. In this study, the crystal structures of recombinant RNA-dependent RNA polymerase (RdRp) from murine norovirus-1 (MNV-1) and its complex with 5-fluorouracil (5FU) were determined at 2.5 Å resolution. Crystals with C2 symmetry revealed a dimer with half a dimer in the asymmetrical unit, and the protein exists predominantly as a monomer in solution, in equilibrium with a smaller population of dimers, trimers and hexamers. MNV-1 RdRp exhibited polymerization activity with a right-hand fold typical of polynucleotide polymerases. The metal ion modelled in close proximity to the active site was found to be coordinated tetrahedrally to the carboxyl groups of aspartate clusters. The orientation of 5FU observed in three molecules in the asymmetrical unit was found to be slightly different, but it was stabilized by a network of favourable interactions with the conserved active-site residues Arg185, Asp245, Asp346, Asp347 and Arg395. The information gained on the structural and functional features of MNV-1 RdRp will be helpful in understanding replication of norovirus and in designing novel therapeutic agents against this important pathogen.


2020 ◽  
Vol 86 ◽  
pp. 107267 ◽  
Author(s):  
Sadegh Kaviani ◽  
Mohammad Izadyar ◽  
Mohammad Reza Housaindokht

Sign in / Sign up

Export Citation Format

Share Document