scholarly journals Respiration and Growth of Shewanella oneidensis MR-1 Using Vanadate as the Sole Electron Acceptor

2005 ◽  
Vol 187 (10) ◽  
pp. 3293-3301 ◽  
Author(s):  
Wesley Carpentier ◽  
Lina De Smet ◽  
Jozef Van Beeumen ◽  
Ann Brigé

ABSTRACT Shewanella oneidensis MR-1 is a free-living gram-negative γ-proteobacterium that is able to use a large number of oxidizing molecules, including fumarate, nitrate, dimethyl sulfoxide, trimethylamine N-oxide, nitrite, and insoluble iron and manganese oxides, to drive anaerobic respiration. Here we show that S. oneidensis MR-1 is able to grow on vanadate as the sole electron acceptor. Oxidant pulse experiments demonstrated that proton translocation across the cytoplasmic membrane occurs during vanadate reduction. Proton translocation is abolished in the presence of protonophores and the inhibitors 2-heptyl-4-hydroxyquinoline N-oxide and antimycin A. Redox difference spectra indicated the involvement of membrane-bound menaquinone and cytochromes c, which was confirmed by transposon mutagenesis and screening for a vanadate reduction-deficient phenotype. Two mutants which are deficient in menaquinone synthesis were isolated. Another mutant with disruption in the cytochrome c maturation gene ccmA was unable to produce any cytochrome c and to grow on vanadate. This phenotype could be restored by complementation with the pEC86 plasmid expressing ccm genes from Escherichia coli. To our knowledge, this is the first report of E. coli ccm genes being functional in another organism. Analysis of an mtrB-deficient mutant confirmed the results of a previous paper indicating that OmcB may function as a vanadate reductase or may be part of a vanadate reductase complex.

2020 ◽  
Vol 86 (19) ◽  
Author(s):  
Bridget E. Conley ◽  
Matthew T. Weinstock ◽  
Daniel R. Bond ◽  
Jeffrey A. Gralnick

ABSTRACT Vibrio natriegens is the fastest-growing microorganism discovered to date, making it a useful model for biotechnology and basic research. While it is recognized for its rapid aerobic metabolism, less is known about anaerobic adaptations in V. natriegens or how the organism survives when oxygen is limited. Here, we describe and characterize extracellular electron transfer (EET) in V. natriegens, a metabolism that requires movement of electrons across protective cellular barriers to reach the extracellular space. V. natriegens performs extracellular electron transfer under fermentative conditions with gluconate, glucosamine, and pyruvate. We characterized a pathway in V. natriegens that requires CymA, PdsA, and MtrCAB for Fe(III) citrate and Fe(III) oxide reduction, which represents a hybrid of strategies previously discovered in Shewanella and Aeromonas. Expression of these V. natriegens genes functionally complemented Shewanella oneidensis mutants. Phylogenetic analysis of the inner membrane quinol dehydrogenases CymA and NapC in gammaproteobacteria suggests that CymA from Shewanella diverged from Vibrionaceae CymA and NapC. Analysis of sequenced Vibrionaceae revealed that the genetic potential to perform EET is conserved in some members of the Harveyi and Vulnificus clades but is more variable in other clades. We provide evidence that EET enhances anaerobic survival of V. natriegens, which may be the primary physiological function for EET in Vibrionaceae. IMPORTANCE Bacteria from the genus Vibrio occupy a variety of marine and brackish niches with fluctuating nutrient and energy sources. When oxygen is limited, fermentation or alternative respiration pathways must be used to conserve energy. In sedimentary environments, insoluble oxide minerals (primarily iron and manganese) are able to serve as electron acceptors for anaerobic respiration by microorganisms capable of extracellular electron transfer, a metabolism that enables the use of these insoluble substrates. Here, we identify the mechanism for extracellular electron transfer in Vibrio natriegens, which uses a combination of strategies previously identified in Shewanella and Aeromonas. We show that extracellular electron transfer enhanced survival of V. natriegens under fermentative conditions, which may be a generalized strategy among Vibrio spp. predicted to have this metabolism.


2002 ◽  
Vol 30 (3) ◽  
pp. A53-A53
Author(s):  
C. Schwalb ◽  
S. K. Chapman ◽  
G. A. Reid

2009 ◽  
Vol 191 (13) ◽  
pp. 4298-4306 ◽  
Author(s):  
M. A. Charania ◽  
K. L. Brockman ◽  
Y. Zhang ◽  
A. Banerjee ◽  
G. E. Pinchuk ◽  
...  

ABSTRACT Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP.


2002 ◽  
Vol 30 (4) ◽  
pp. 658-662 ◽  
Author(s):  
C. Schwalb ◽  
S. K. Chapman ◽  
G. A. Reid

Shewanella spp. demonstrate great variability in the use of terminal electron acceptors in anaerobic respiration; these include nitrate, fumarate, DMSO, trimethylamine oxide, sulphur compounds and metal oxides. These pathways open up possible applications in bioremediation. The wide variety of respiratory substrates for Shewanella is correlated with the evolution of several multi-haem membrane-bound, periplasmic and outer-membrane c-type cytochromes. The 21 kDa c-type cytochrome CymA of the freshwater strain Shewanella oneidensis MR-1 has an N-terminal membrane anchor and a globular tetrahaem periplasmic domain. According to sequence alignments, CymA is a member of the NapC/NirT family. This family of redox proteins is responsible for electron transfer from the quinone pool to periplasmic and outer-membrane-bound reductases. Prior investigations have shown that the absence of CymA results in loss of the ability to respire with Fe(III), fumarate and nitrate, indicating that CymA is involved in electron transfer to several terminal reductases. Here we describe the expression, purification and characterization of a soluble, truncated CymA (‘CymA). Potentiometric studies suggest that there are two pairs of haems with potentials of -175 and -261 mV and that ‘CymA is an efficient electron donor for the soluble fumarate reductase, flavocytochrome c3.


1980 ◽  
Vol 188 (2) ◽  
pp. 345-350 ◽  
Author(s):  
R W Jones

H2-dependent reduction of fumarate and nitrate by spheroplasts from Escherichia coli is coupled to the translocation of protons across the cytoplasmic membrane. The leads to H+/2e- stoicheiometry (g-ions of H+ translocated divided by mol of H2 added) is approx. 2 with fumarate and approx. 4 with nitrate as electron acceptor. This proton translocation is dependent on H2 and a terminal electron acceptor and is not observed in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone and the respiratory inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide. H2-dependent reduction of menadione and ubiquinone-1 is coupled to a protonophore-sensitive, but 2-n-heptyl-4-hydroxy-quinoline N-oxide-insensitive, proton translocation with leads to H+/2e- stoicheiometry of approx. 2. H2-dependent reduction of Benzyl Viologen (BV++) to its radical (BV+) liberates protons at the periplasmic aspect of the cytoplasmic membrane according to the reaction: H2 + 2BV++ leads to 2H+ + 2BV+. It is concluded that the effective proton translocation observed in the H2-oxidizing segment of the anaerobic respiratory chain of Escherichia coli arises as a direct and inevitable consequence of transmembranous electron transfer between protolytic reactions that are spatially separated by a membrane of low proton-permeability.


1998 ◽  
Vol 180 (13) ◽  
pp. 3448-3452 ◽  
Author(s):  
Claudia Ruppert ◽  
Sönke Wimmers ◽  
Thorsten Lemker ◽  
Volker Müller

ABSTRACT Three additional ATPase genes, clustered in the orderahaH, ahaI, and ahaK, were found upstream of the previously characterized genes ahaECFABDGcoding for the archaeal A1Ao ATPase fromMethanosarcina mazei. ahaH, the first gene in the cluster, is preceded by a conserved promoter sequence. Northern blot analysis revealed that the clusters ahaHIK andahaECFABDG are transcribed as one message. AhaH is a hydrophilic polypeptide and is similar to peptides of previously unassigned function encoded by genes preceding postulated ATPase genes in Methanobacterium thermoautotrophicum andMethanococcus jannaschii. AhaI has a two-domain structure with a hydrophilic domain of 39 kDa and a hydrophobic domain with seven predicted transmembrane α helices. It is similar to the 100-kDa polypeptide of V1Vo ATPases and is therefore suggested to participate in proton transport. AhaK is a hydrophobic polypeptide with two predicted transmembrane α helices and, on the basis of sequence comparisons and immunological studies, is identified as the proteolipid, a polypeptide which is essential for proton translocation. However, it is only one-half and one-third the size of the proteolipids from M. thermoautotrophicum and M. jannaschii, respectively. ahaK is expressed inEscherichia coli, and it is incorporated into the cytoplasmic membrane despite the different chemical natures of lipids from archaea and bacteria. This is the first report on the expression and incorporation into E. coli lipids of a membrane integral enzyme from a methanogens, which will facilitate analysis of the structure and function of the membrane domain of the methanoarchaeal ATPase.


2015 ◽  
Vol 197 (12) ◽  
pp. 1976-1987 ◽  
Author(s):  
Manuela Roggiani ◽  
Mark Goulian

ABSTRACTEscherichia colisenses and responds to trimethylamine-N-oxide (TMAO) in the environment through the TorT-TorS-TorR signal transduction system. The periplasmic protein TorT binds TMAO and stimulates the hybrid kinase TorS to phosphorylate the response regulator TorR through a phosphorelay. Phosphorylated TorR, in turn, activates transcription of thetorCADoperon, which encodes the proteins required for anaerobic respiration via reduction of TMAO to trimethylamine. Interestingly,E. colirespires TMAO in both the presence and absence of oxygen, a behavior that is markedly different from the utilization of other alternative electron acceptors by this bacterium. Here we describe an unusual form of regulation by oxygen for this system. While the average level oftorCADtranscription is the same for aerobic and anaerobic cultures containing TMAO, the behavior across the population of cells is strikingly different under the two growth conditions. Cellular levels oftorCADtranscription in aerobic cultures are highly heterogeneous, in contrast to the relatively homogeneous distribution in anaerobic cultures. Thus, oxygen regulates the variance of the output but not the mean for the Tor system. We further show that this oxygen-dependent variability stems from the phosphorelay.IMPORTANCETrimethylamine-N-oxide (TMAO) is utilized by numerous bacteria as an electron acceptor for anaerobic respiration. InE. coli, expression of the proteins required for TMAO respiration is tightly regulated by a signal transduction system that is activated by TMAO. Curiously, although oxygen is the energetically preferred electron acceptor, TMAO is respired even in the presence of oxygen. Here we describe an interesting and unexpected form of regulation for this system in which oxygen produces highly variable expression of the TMAO utilization proteins across a population of cells without affecting the mean expression of these proteins. To our knowledge, this is the first reported example of a stimulus regulating the variance but not the mean output of a signaling system.


Archaea ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
William P. Hocking ◽  
Irene Roalkvam ◽  
Carina Magnussen ◽  
Runar Stokke ◽  
Ida H. Steen

The hyperthermophilic, sulfate-reducing archaeon,Archaeoglobus fulgidus, utilizes CO as an energy source and it is resistant to the toxic effects of high CO concentrations. Herein, transcription profiles were obtained fromA. fulgidusduring growth with CO and sulfate or thiosulfate, or without an electron acceptor. This provided a basis for a model of the CO metabolism ofA. fulgidus. The model suggests proton translocation by “Mitchell-type” loops facilitated by Fqo catalyzing aFdred:menaquinone oxidoreductase reaction, as the major mode of energy conservation, rather than formate or H2cycling during respiratory growth. The bifunctional CODH (cdhAB-2) is predicted to play an ubiquitous role in the metabolism of CO, and a novel nitrate reductase-associated respiratory complex was induced specifically in the presence of sulfate. A potential role of this complex in relation toFdredand APS reduction is discussed. Multiple membrane-bound heterodisulfide reductase (DsrMK) could promote both energy-conserving and non-energy-conserving menaquinol oxidation. Finally, the FqoF subunit may catalyze aFdred:F420oxidoreductase reaction. In the absence of electron acceptor, downregulation of F420H2dependent steps of the acetyl-CoA pathway is linked to transient formate generation. Overall, carboxidotrophic growth seems as an intrinsic capacity ofA. fulgiduswith little need for novel resistance or respiratory complexes.


2004 ◽  
Vol 70 (2) ◽  
pp. 921-928 ◽  
Author(s):  
Maria E. Hernandez ◽  
Andreas Kappler ◽  
Dianne K. Newman

ABSTRACT Natural products with important therapeutic properties are known to be produced by a variety of soil bacteria, yet the ecological function of these compounds is not well understood. Here we show that phenazines and other redox-active antibiotics can promote microbial mineral reduction. Pseudomonas chlororaphis PCL1391, a root isolate that produces phenazine-1-carboxamide (PCN), is able to reductively dissolve poorly crystalline iron and manganese oxides, whereas a strain carrying a mutation in one of the phenazine-biosynthetic genes (phzB) is not; the addition of purified PCN restores this ability to the mutant strain. The small amount of PCN produced relative to the large amount of ferric iron reduced in cultures of P. chlororaphis implies that PCN is recycled multiple times; moreover, poorly crystalline iron (hydr)oxide can be reduced abiotically by reduced PCN. This ability suggests that PCN functions as an electron shuttle rather than an iron chelator, a finding that is consistent with the observation that dissolved ferric iron is undetectable in culture fluids. Multiple phenazines and the glycopeptidic antibiotic bleomycin can also stimulate mineral reduction by the dissimilatory iron-reducing bacterium Shewanella oneidensis MR1. Because diverse bacterial strains that cannot grow on iron can reduce phenazines, and because thermodynamic calculations suggest that phenazines have lower redox potentials than those of poorly crystalline iron (hydr)oxides in a range of relevant environmental pH (5 to 9), we suggest that natural products like phenazines may promote microbial mineral reduction in the environment.


Sign in / Sign up

Export Citation Format

Share Document