scholarly journals The A1Ao ATPase fromMethanosarcina mazei: Cloning of the 5′ End of theaha Operon Encoding the Membrane Domain and Expression of the Proteolipid in a Membrane-Bound Form in Escherichia coli

1998 ◽  
Vol 180 (13) ◽  
pp. 3448-3452 ◽  
Author(s):  
Claudia Ruppert ◽  
Sönke Wimmers ◽  
Thorsten Lemker ◽  
Volker Müller

ABSTRACT Three additional ATPase genes, clustered in the orderahaH, ahaI, and ahaK, were found upstream of the previously characterized genes ahaECFABDGcoding for the archaeal A1Ao ATPase fromMethanosarcina mazei. ahaH, the first gene in the cluster, is preceded by a conserved promoter sequence. Northern blot analysis revealed that the clusters ahaHIK andahaECFABDG are transcribed as one message. AhaH is a hydrophilic polypeptide and is similar to peptides of previously unassigned function encoded by genes preceding postulated ATPase genes in Methanobacterium thermoautotrophicum andMethanococcus jannaschii. AhaI has a two-domain structure with a hydrophilic domain of 39 kDa and a hydrophobic domain with seven predicted transmembrane α helices. It is similar to the 100-kDa polypeptide of V1Vo ATPases and is therefore suggested to participate in proton transport. AhaK is a hydrophobic polypeptide with two predicted transmembrane α helices and, on the basis of sequence comparisons and immunological studies, is identified as the proteolipid, a polypeptide which is essential for proton translocation. However, it is only one-half and one-third the size of the proteolipids from M. thermoautotrophicum and M. jannaschii, respectively. ahaK is expressed inEscherichia coli, and it is incorporated into the cytoplasmic membrane despite the different chemical natures of lipids from archaea and bacteria. This is the first report on the expression and incorporation into E. coli lipids of a membrane integral enzyme from a methanogens, which will facilitate analysis of the structure and function of the membrane domain of the methanoarchaeal ATPase.

2000 ◽  
Vol 182 (15) ◽  
pp. 4234-4240 ◽  
Author(s):  
Khoosheh K. Gosink ◽  
Claudia C. Häse

ABSTRACT Bacterial flagella are powered by a motor that converts a transmembrane electrochemical potential of either H+ or Na+ into mechanical work. In Escherichia coli, the MotA and MotB proteins form the stator and function in proton translocation, whereas the FliG protein is located on the rotor and is involved in flagellar assembly and torque generation. The sodium-driven polar flagella of Vibrio species contain homologs of MotA and MotB, called PomA and PomB, and also contain two other membrane proteins called MotX and MotY, which are essential for motor rotation and that might also function in ion conduction. Deletions inpomA, pomB, motX, ormotY in Vibrio cholerae resulted in a nonmotile phenotype, whereas deletion of fliG gave a nonflagellate phenotype. fliG genes on plasmids complementedfliG-null strains of the parent species but notfliG-null strains of the other species. FliG-null strains were complemented by chimeric FliG proteins in which the C-terminal domain came from the other species, however, implying that the C-terminal part of FliG can function in conjunction with the ion-translocating components of either species. A V. cholerae strain deleted of pomA, pomB,motX, and motY became weakly motile when theE. coli motA and motB genes were introduced on a plasmid. Like E. coli, but unlike wild-type V. cholerae, motility of some V. cholerae strains containing the hybrid motor was inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone under neutral as well as alkaline conditions but not by the sodium motor-specific inhibitor phenamil. We conclude that the E. coli proton motor components MotA and MotB can function in place of the motor proteins ofV. cholerae and that the hybrid motors are driven by the proton motive force.


2006 ◽  
Vol 400 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Eric Di Luccio ◽  
Robert A. Elling ◽  
David K. Wilson

The AKRs (aldo-keto reductases) are a superfamily of enzymes which mainly rely on NADPH to reversibly reduce various carbonyl-containing compounds to the corresponding alcohols. A small number have been found with dual NADPH/NADH specificity, usually preferring NADPH, but none are exclusive for NADH. Crystal structures of the dual-specificity enzyme xylose reductase (AKR2B5) indicate that NAD+ is bound via a key interaction with a glutamate that is able to change conformations to accommodate the 2′-phosphate of NADP+. Sequence comparisons suggest that analogous glutamate or aspartate residues may function in other AKRs to allow NADH utilization. Based on this, nine putative enzymes with potential NADH specificity were identified and seven genes were successfully expressed and purified from Drosophila melanogaster, Escherichia coli, Schizosaccharomyces pombe, Sulfolobus solfataricus, Sinorhizobium meliloti and Thermotoga maritima. Each was assayed for co-substrate dependence with conventional AKR substrates. Three were exclusive for NADPH (AKR2E3, AKR3F2 and AKR3F3), two were dual-specific (AKR3C2 and AKR3F1) and one was specific for NADH (AKR11B2), the first such activity in an AKR. Fluorescence measurements of the seventh protein indicated that it bound both NADPH and NADH but had no activity. Mutation of the aspartate into an alanine residue or a more mobile glutamate in the NADH-specific E. coli protein converted it into an enzyme with dual specificity. These results show that the presence of this carboxylate is an indication of NADH dependence. This should allow improved prediction of co-substrate specificity and provide a basis for engineering enzymes with altered co-substrate utilization for this class of enzymes.


2006 ◽  
Vol 188 (6) ◽  
pp. 2163-2172 ◽  
Author(s):  
Paul W. King ◽  
Matthew C. Posewitz ◽  
Maria L. Ghirardi ◽  
Michael Seibert

ABSTRACT Maturation of [FeFe] hydrogenases requires the biosynthesis and insertion of the catalytic iron-sulfur cluster, the H cluster. Two radical S-adenosylmethionine (SAM) proteins proposed to function in H cluster biosynthesis, HydEF and HydG, were recently identified in the hydEF-1 mutant of the green alga Chlamydomonas reinhardtii (M. C. Posewitz, P. W. King, S. L. Smolinski, L. Zhang, M. Seibert, and M. L. Ghirardi, J. Biol. Chem. 279:25711-25720, 2004). Previous efforts to study [FeFe] hydrogenase maturation in Escherichia coli by coexpression of C. reinhardtii HydEF and HydG and the HydA1 [FeFe] hydrogenase were hindered by instability of the hydEF and hydG expression clones. A more stable [FeFe] hydrogenase expression system has been achieved in E. coli by cloning and coexpression of hydE, hydF, and hydG from the bacterium Clostridium acetobutylicum. Coexpression of the C. acetobutylicum maturation proteins with various algal and bacterial [FeFe] hydrogenases in E. coli resulted in purified enzymes with specific activities that were similar to those of the enzymes purified from native sources. In the case of structurally complex [FeFe] hydrogenases, maturation of the catalytic sites could occur in the absence of an accessory iron-sulfur cluster domain. Initial investigations of the structure and function of the maturation proteins HydE, HydF, and HydG showed that the highly conserved radical-SAM domains of both HydE and HydG and the GTPase domain of HydF were essential for achieving biosynthesis of active [FeFe] hydrogenases. Together, these results demonstrate that the catalytic domain and a functionally complete set of Hyd maturation proteins are fundamental to achieving biosynthesis of catalytic [FeFe] hydrogenases.


2002 ◽  
Vol 184 (13) ◽  
pp. 3630-3639 ◽  
Author(s):  
David E. Nelson ◽  
Anindya S. Ghosh ◽  
Avery L. Paulson ◽  
Kevin D. Young

ABSTRACT Four low-molecular-weight penicillin binding proteins (LMW PBPs) of Escherichia coli are closely related and have similar dd-carboxypeptidase activities (PBPs 4, 5, and 6 and DacD). However, only one, PBP 5, has a demonstrated physiological function. In its absence, certain mutants of E. coli have altered diameters and lose their uniform outer contour, resulting in morphologically aberrant cells. To determine what differentiates the activities of these LMW PBPs, we constructed fusion proteins combining portions of PBP 5 with fragments of other dd-carboxypeptidases to see which hybrids restored normal morphology to a strain lacking PBP 5. Functional complementation occurred when truncated PBP 5 was combined with the terminal membrane anchor sequences of PBP 6 or DacD. However, complementation was not restored by the putative carboxy-terminal anchor of PBP 4 or by a transmembrane region of the osmosensor protein ProW, even though these hybrids were membrane bound. Site-directed mutagenesis of the carboxy terminus of PBP 5 indicated that complementation required a generalized amphipathic membrane anchor but that no specific residues in this region seemed to be required. A functional fusion protein was produced by combining the N-terminal enzymatic domain of PBP 5 with the C-terminal β-sheet domain of PBP 6. In contrast, the opposite hybrid of PBP 6 to PBP 5 was not functional. The results suggest that the mode of PBP 5 membrane anchoring is important, that the mechanism entails more than a simple mechanical tethering of the enzyme to the outer face of the inner membrane, and that the physiological differences among the LMW PBPs arise from structural differences in the dd-carboxypeptidase enzymatic core.


2002 ◽  
Vol 184 (9) ◽  
pp. 2533-2538 ◽  
Author(s):  
Dvora Berenstein ◽  
Kirsten Olesen ◽  
Christian Speck ◽  
Ole Skovgaard

ABSTRACT The Vibrionaceae family is distantly related to Enterobacteriaceae within the group of bacteria possessing the Dam methylase system. We have cloned, sequenced, and analyzed the dnaA gene region of Vibrio harveyi and found that although the organization of the V. harveyi dnaA region differs from that of Escherichia coli, the expression of both genes is autoregulated and ATP-DnaA binds cooperatively to ATP-DnaA boxes in the dnaA promoter region. The DnaA proteins of V. harveyi and E. coli are interchangeable and function nearly identically in controlling dnaA transcription and the initiation of chromosomal DNA replication despite the evolutionary distance between these bacteria.


2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Charles T. Lauhon

ABSTRACT In bacteria, tRNAs that decode 4-fold degenerate family codons and have uridine at position 34 of the anticodon are typically modified with either 5-methoxyuridine (mo5U) or 5-methoxycarbonylmethoxyuridine (mcmo5U). These modifications are critical for extended recognition of some codons at the wobble position. Whereas the alkylation steps of these modifications have been described, genes required for the hydroxylation of U34 to give 5-hydroxyuridine (ho5U) remain unknown. Here, a number of genes in Escherichia coli and Bacillus subtilis are identified that are required for wild-type (wt) levels of ho5U. The yrrMNO operon is identified in B. subtilis as important for the biosynthesis of ho5U. Both yrrN and yrrO are homologs to peptidase U32 family genes, which includes the rlhA gene required for ho5C synthesis in E. coli. Deletion of either yrrN or yrrO, or both, gives a 50% reduction in mo5U tRNA levels. In E. coli, yegQ was found to be the only one of four peptidase U32 genes involved in ho5U synthesis. Interestingly, this mutant shows the same 50% reduction in (m)cmo5U as that observed for mo5U in the B. subtilis mutants. By analyzing the genomic context of yegQ homologs, the ferredoxin YfhL is shown to be required for ho5U synthesis in E. coli to the same extent as yegQ. Additional genes required for Fe-S biosynthesis and biosynthesis of prephenate give the same 50% reduction in modification. Together, these data suggest that ho5U biosynthesis in bacteria is similar to that of ho5C, but additional genes and substrates are required for complete modification. IMPORTANCE Modified nucleotides in tRNA serve to optimize both its structure and function for accurate translation of the genetic code. The biosynthesis of these modifications has been fertile ground for uncovering unique biochemistry and metabolism in cells. In this work, genes that are required for a novel anaerobic hydroxylation of uridine at the wobble position of some tRNAs are identified in both Bacillus subtilis and Escherichia coli. These genes code for Fe-S cluster proteins, and their deletion reduces the levels of the hydroxyuridine by 50% in both organisms. Additional genes required for Fe-S cluster and prephenate biosynthesis and a previously described ferredoxin gene all display a similar reduction in hydroxyuridine levels, suggesting that still other genes are required for the modification.


2021 ◽  
Author(s):  
Heesu Kim ◽  
Dong Gun Lee

Abstract Hydrogen peroxide (H2O2) is a debriding agent that damages the microbial structure and function by generating various reactive oxygen species (ROS). H2O2-produced hydroxyl radical (OH∙) also exert oxidative stress on microorganisms. The spread of antibiotic resistance in bacteria is a serious issue worldwide, and greater efforts are needed to identify and characterize novel antibacterial mechanisms to develop new treatment strategies. Therefore, this study aimed to clarify the relationship between H2O2 and Escherichia coli and to elucidate a novel antibacterial mechanism(s) of H2O2. Following H2O2 exposure, increased levels of 8-hydroxyldeoxyguanosine and malondialdehyde indicated that H2O2 accelerates oxidation of bacterial DNA and lipids in E. coli. As oxidative damage worsened, the SOS response was triggered. Cell division arrest and resulting filamentation were identified in cells, indicating that LexA was involved in DNA replication. It was also verified that RecA, a representative SOS gene, helps self-cleavage of LexA and acts as a bacterial caspase-like protein. Our findings also showed that dinF is essential to preserve E. coli from H2O2-induced ROS, and furthermore, demonstrated that H2O2-induced SOS response and SOS genes participate differently in guarding E. coli from oxidative stress. As an extreme SOS response is considered apoptosis-like death (ALD) in bacteria, additional experiments were performed to examine the characteristics of ALD. DNA fragmentation and membrane depolarization appeared in H2O2-treated cells, suggesting that H2O2 causes ALD in E. coli. In conclusion, our investigations revealed that ALD is a novel antibacterial mode of action(s) of H2O2 with important contributions from SOS genes.


Author(s):  
Xiaoming Wang ◽  
Yao Wang ◽  
Zhuoren Ling ◽  
Chaoyang Zhang ◽  
Mingming Fu ◽  
...  

Abstract Background Plasmid-mediated mechanisms of drug resistance accelerate the spread of polymyxin resistance, leaving clinicians with few or no antibacterial options for the treatment of infections caused by MDR bacteria, especially carbapenemase-producing strains. Objectives To evaluate the associations among promoter sequence variation, mcr-1 expression, host factors and levels of colistin resistance and to propose antisense agents such as peptide nucleic acids (PNAs) targeting mcr-1 as a tool to restore colistin susceptibility through modulation of MCR-1 expression in Escherichia coli. Methods A β-galactosidase assay was performed to study mcr-1 promoter activity. Quantitative real-time PCR and western blot assays were used to identify the expression level of MCR-1 in WT strains and transformants. Three PNAs targeting different regions of mcr-1 were designed and synthesized to determine whether they can effectively inhibit MCR-1 expression. MIC was measured to test colistin susceptibility in the presence or absence of PNA-1 in mcr-1-carrying E. coli. Results Variation in the mcr-1 promoter sequence and host species affect promoter activity, MCR-1 expression levels and colistin MICs. One PNA targeting the ribosome-binding site fully inhibited the expression of mcr-1 at a concentration of 4 μM, resulting in significantly increased susceptibility to colistin. The MIC90 of colistin decreased from 8 to 2 mg/L (P < 0.05) in the presence of 4 μM PNA. Conclusions These findings suggest that the antisense approach is a possible strategy to combat mcr-1-mediated resistance as well as other causes of emerging global resistance.


2006 ◽  
Vol 188 (15) ◽  
pp. 5524-5531 ◽  
Author(s):  
Hilda Hiu Yin Yu ◽  
Elizabeth G. Di Russo ◽  
Megan A. Rounds ◽  
Ming Tan

ABSTRACT σ28 RNA polymerase is an alternative RNA polymerase that has been postulated to have a role in developmental gene regulation in Chlamydia. Although a consensus bacterial σ28 promoter sequence has been proposed, it is based on a relatively small number of defined promoters, and the promoter structure has not been systematically analyzed. To evaluate the sequence of the σ28-dependent promoter, we performed a comprehensive mutational analysis of the Chlamydia trachomatis hctB promoter, testing the effect of point substitutions on promoter activity. We defined a −35 element recognized by chlamydial σ28 RNA polymerase that resembles the consensus −35 sequence. Within the −10 element, however, chlamydial σ28 RNA polymerase showed a striking preference for a CGA sequence at positions −12 to −10 rather than the longer consensus −10 sequence. We also observed a strong preference for this CGA sequence by Escherichia coli σ28 RNA polymerase, suggesting that this previously unrecognized motif is the critical component of the −10 promoter element recognized by σ28 RNA polymerase. Although the consensus spacer length is 11 nucleotides (nt), we found that σ28 RNA polymerase from both Chlamydia and E. coli transcribed a promoter with either an 11- or 12-nt spacer equally well. Altogether, we found very similar results for σ28 RNA polymerase from C. trachomatis and E. coli, suggesting that promoter recognition by this alternative RNA polymerase is well conserved among bacteria. The preferred σ28 promoter that we defined in the context of the hctB promoter is TAAAGwwy-n11/12-ryCGAwrn, where w is A or T, r is a purine, y is a pyrimidine, n is any nucleotide, and n11/12 is a spacer of 11 or 12 nt.


2009 ◽  
Vol 417 (3) ◽  
pp. 667-672 ◽  
Author(s):  
Marina C. Theodorou ◽  
Ekaterini Tiligada ◽  
Dimitrios A. Kyriakidis

Escherichia coli is exposed to wide extracellular concentrations of Ca2+, whereas the cytosolic levels of the ion are subject to stringent control and are implicated in many physiological functions. The present study shows that extracellular Ca2+ controls cPHB [complexed poly-(R)-3-hydroxybutyrate] biosynthesis through the AtoS-AtoC two-component system. Maximal cPHB accumulation was observed at higher [Ca2+]e (extracellular Ca2+ concentration) in AtoS-AtoC-expressing E. coli compared with their ΔatoSC counterparts, in both cytosolic and membrane fractions. The reversal of EGTA-mediated down-regulation of cPHB biosynthesis by the addition of Ca2+ and Mg2+ was under the control of the AtoS-AtoC system. Moreover, the Ca2+-channel blocker verapamil reduced total and membrane-bound cPHB levels, the inhibitory effect being circumvented by Ca2+ addition only in atoSC+ bacteria. Histamine and compound 48/80 affected cPHB accumulation in a [Ca2+]e-dependent manner directed by the AtoS-AtoC system. In conclusion, these data provide evidence for the involvement of external Ca2+ on cPHB synthesis regulated by the AtoS-AtoC two-component system, thus linking Ca2+ with a signal transduction system, most probably through a transporter.


Sign in / Sign up

Export Citation Format

Share Document