flagellum biosynthesis
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 6)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Kimberley A. Lewis ◽  
Danielle M Vermilyea ◽  
Shanice S Webster ◽  
Jaime de Anda ◽  
Gerard Wong ◽  
...  

The downregulation of P. aeruginosa flagellar motility is a key event in biofilm formation, host-colonization, and the formation of microbial communities, but the external factors that repress motility are not well understood. Here, we report that under swarming conditions, motility can be repressed by cells that are non-motile due to the absence of a flagellum or flagellar rotation. Non-motile cells, due to mutations that prevent either flagellum biosynthesis or rotation, present at 5% of the total population suppressed swarming of wild-type cells under the conditions tested in this study. Non-motile cells required functional type IV pili and the ability to produce the Pel exopolysaccharide to suppress swarming by the motile wild type. In contrast, motile cells required only type IV pili, but not Pel production, in order for swarming to be repressed by non-motile cells. We hypothesize that interactions between motile and non-motile cells may enhance the formation of sessile communities including those involving multiple genotypes, phenotypically-diverse cells, and perhaps other species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tian Zhou ◽  
Jiahui Huang ◽  
Zhiqing Liu ◽  
Zeling Xu ◽  
Lian-hui Zhang

Pseudomonas aeruginosa, a major cause of nosocomial infection, can survive under diverse environmental conditions. Its great adaptive ability is dependent on its multiple signaling systems such as the two-component system (TCS). A TCS FleS/FleR has been previously identified to positively regulate a variety of virulence-related traits in P. aeruginosa PAO1 including motility and biofilm formation which are involved in the acute and chronic infections, respectively. However, the molecular mechanisms underlying these regulations are still unclear. In this study, we first analyzed the regulatory roles of each domains in FleS/FleR and characterized key residues in the FleS-HisKA, FleR-REC and FleR-AAA domains that are essential for the signaling. Next, we revealed that FleS/FleR regulates biofilm formation in a c-di-GMP and FleQ dependent manner. Lastly, we demonstrated that FleR can regulate flagellum biosynthesis independently without FleS, which explains the discrepant regulation of swimming motility by FleS and FleR.


2021 ◽  
Author(s):  
Tian Zhou ◽  
Jia-hui Huang ◽  
Qi-shun Feng ◽  
Zhi-qing Liu ◽  
Qi-qi Lin ◽  
...  

AbstractMicroorganisms commonly use two-component systems (TCSs) to detect specific environmental changes and respond accordingly for their own benefit. However, the regulatory mechanisms and physiological roles of a majority of TCSs are still elusive. In this study, we focused on a previously predicted TCS FleS/FleR in Pseudomonas aeruginosa to systematically investigate its regulation and physiological roles. Loss of fleS or fleR or both genes led to decreased biofilm formation and attenuated motility in PAO1, which could be restored by heterologously complementation of FleR but not FleS, confirming that the sensor kinase FleS and the response regulator FleR constitute a TCS pair. To determine the regulatory spectrum of this TCS, we conducted transcriptome sequencing and comparison between the wild-type strain and the fleR deletion mutant. The result showed that the TCS regulates about 440 genes including most of them are involved in the virulence-related pathways, e.g. siderophore biosynthesis, pyocyanin biosynthesis, type III/VI secretion systems, c-di-GMP metabolism, flagellar assembly etc. In addition to its roles in controlling biofilm formation and motility we have already shown, FleR was demonstrated to regulate the production of virulence factors such as pyocyanin and elastase, mediate stress response to SDS, and autoregulate its own expression. Moreover, EMSA assays revealed that FleR regulates flagellum biosynthesis genes flgBCDE, flgFGHIJKL, filC, which are essential for the bacterial motility, by directly interacting with their promoters. Taken together, these results expanded our understanding on the biological roles of FleS/FleR and provided new insights on its regulatory mechanisms.


2020 ◽  
Vol 133 (13) ◽  
pp. jcs129213
Author(s):  
Robert L. Douglas ◽  
Brett M. Haltiwanger ◽  
Anna Albisetti ◽  
Haiming Wu ◽  
Robert L. Jeng ◽  
...  

2020 ◽  
Vol 6 (6) ◽  
pp. eaax0947 ◽  
Author(s):  
J. Mark Kim ◽  
Mayra Garcia-Alcala ◽  
Enrique Balleza ◽  
Philippe Cluzel

The classic picture of flagellum biosynthesis in Escherichia coli, inferred from population measurements, depicts a deterministic program where promoters are sequentially up-regulated and are maintained steadily active throughout exponential growth. However, complex regulatory dynamics at the single-cell level can be masked by bulk measurements. Here, we discover that in individual E. coli cells, flagellar promoters are stochastically activated in pulses. These pulses are coordinated within specific classes of promoters and comprise “on” and “off” states, each of which can span multiple generations. We demonstrate that in this pulsing program, the regulatory logic of flagellar assembly dictates which promoters skip pulses. Surprisingly, pulses do not require specific transcriptional or translational regulation of the flagellar master regulator, FlhDC, but instead appears to be essentially governed by an autonomous posttranslational circuit. Our results suggest that even topologically simple transcriptional networks can generate unexpectedly rich temporal dynamics and phenotypic heterogeneities.


2019 ◽  
Vol 201 (21) ◽  
Author(s):  
Joshua K. Chu ◽  
Shiwei Zhu ◽  
Carmen M. Herrera ◽  
Jeremy C. Henderson ◽  
Jun Liu ◽  
...  

ABSTRACT Helicobacter pylori uses a cluster of polar, sheathed flagella for motility, which it requires for colonization of the gastric epithelium in humans. As part of a study to identify factors that contribute to localization of the flagella to the cell pole, we disrupted a gene encoding a cardiolipin synthase (clsC) in H. pylori strains G27 and B128. Flagellum biosynthesis was abolished in the H. pylori G27 clsC mutant but not in the B128 clsC mutant. Transcriptome sequencing analysis showed that flagellar genes encoding proteins needed early in flagellum assembly were expressed at wild-type levels in the G27 clsC mutant. Examination of the G27 clsC mutant by cryo-electron tomography indicated the mutant assembled nascent flagella that contained the MS ring, C ring, flagellar protein export apparatus, and proximal rod. Motile variants of the G27 clsC mutant were isolated after allelic exchange mutagenesis using genomic DNA from the B128 clsC mutant as the donor. Genome resequencing of seven motile G27 clsC recipients revealed that each isolate contained the flgI (encodes the P-ring protein) allele from B128. Replacing the flgI allele in the G27 clsC mutant with the B128 flgI allele rescued flagellum biosynthesis. We postulate that H. pylori G27 FlgI fails to form the P ring when cardiolipin levels in the cell envelope are low, which blocks flagellum assembly at this point. In contrast, H. pylori B128 FlgI can form the P ring when cardiolipin levels are low and allows for the biosynthesis of mature flagella. IMPORTANCE H. pylori colonizes the epithelial layer of the human stomach, where it can cause a variety of diseases, including chronic gastritis, peptic ulcer disease, and gastric cancer. To colonize the stomach, H. pylori must penetrate the viscous mucous layer lining the stomach, which it accomplishes using its flagella. The significance of our research is identifying factors that affect the biosynthesis and assembly of the H. pylori flagellum, which will contribute to our understanding of motility in H. pylori, as well as other bacterial pathogens that use their flagella for host colonization.


2018 ◽  
Author(s):  
J. Mark Kim ◽  
Mayra Garcia-Alcala ◽  
Enrique Balleza ◽  
Philippe Cluzel

AbstractThe classic picture of flagellum biosynthesis in E. coli, inferred from population measurements, describes a tightly controlled, deterministic transcriptional program. In individual E. coli cells, we discover that flagellar promoters are in fact stochastically activated in pulses. Such pulses comprise coordinated ‘on’ and ‘off’ states of promoter activity, each of which can span multiple generations. We demonstrate that this pulsing program obeys the regulatory logic of flagellar assembly, which dictates whether some promoters skip pulses. Remarkably, pulses in this transcriptional network appear to be actually governed by a post-translational circuit. Our results suggest that even topologically simple transcriptional networks can generate unexpectedly rich temporal dynamics and phenotypic heterogeneities.


Horticulturae ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 40 ◽  
Author(s):  
Robert Price ◽  
Cameron Parsons ◽  
Sophia Kathariou

Listeria monocytogenes is a foodborne pathogen that is implicated in numerous outbreaks of disease (listeriosis) via fresh produce. The genetic features of L. monocytogenes that allow adherence and growth on produce remain largely uncharacterized. In this study, two non-motile transposon mutants were characterized for attachment, growth, and survival on the surface of cantaloupe rind. One of the mutants, L1E4, harbored a single transposon insertion in a DEAD-box RNA helicase gene (lmo0866 homolog), while the other, M1A5, harbored an insertion in a gene from a flagellum biosynthesis and chemotaxis gene cluster (lmo0694 homolog). When inoculated alone, neither mutant was significantly impaired in growth or survival on the surface of cantaloupe at either 25 or 37 °C. However, when co-inoculated with the wildtype parental strain, the RNA helicase mutant L1E4 had a clear competitive disadvantage, while the relative fitness of M1A5 was not noticeably impacted. Genetic complementation of L1E4 with the intact RNA helicase gene restored relative fitness on cantaloupe. The findings suggest that the DEAD-box RNA helicase encoded by the lmo0866 homolog is critical for relative fitness of L. monocytogenes on cantaloupe. Mutant L1E4 was pleiotropic, being not only non-motile but also cold-sensitive and with reduced hemolytic activity, warranting further studies to elucidate the role of this helicase in the competitive fitness of L. monocytogenes on produce.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Imke Spöring ◽  
Sebastian Felgner ◽  
Matthias Preuße ◽  
Denitsa Eckweiler ◽  
Manfred Rohde ◽  
...  

ABSTRACTFlagellum-driven motility ofSalmonella entericaserovar Typhimurium facilitates host colonization. However, the large extracellular flagellum is also a prime target for the immune system. As consequence, expression of flagella is bistable within a population ofSalmonella, resulting in flagellated and nonflagellated subpopulations. This allows the bacteria to maximize fitness in hostile environments. The degenerate EAL domain protein RflP (formerly YdiV) is responsible for the bistable expression of flagella by directing the flagellar master regulatory complex FlhD4C2with respect to proteolytic degradation. Information concerning the environmental cues controlling expression ofrflPand thus about the bistable flagellar biosynthesis remains ambiguous. Here, we demonstrated that RflP responds to cell envelope stress and alterations of outer membrane integrity. Lipopolysaccharide (LPS) truncation mutants ofSalmonellaTyphimurium exhibited increasing motility defects due to downregulation of flagellar gene expression. Transposon mutagenesis and genetic profiling revealed that σ24(RpoE) and Rcs phosphorelay-dependent cell envelope stress response systems sense modifications of the lipopolysaccaride, low pH, and activity of the complement system. This subsequently results in activation of RflP expression and degradation of FlhD4C2via ClpXP. We speculate that the presence of diverse hostile environments inside the host might result in cell envelope damage and would thus trigger the repression of resource-costly and immunogenic flagellum biosynthesis via activation of the cell envelope stress response.IMPORTANCEPathogenic bacteria such asSalmonellaTyphimurium sense and adapt to a multitude of changing and stressful environments during host infection. At the initial stage of gastrointestinal colonization,Salmonellauses flagellum-mediated motility to reach preferred sites of infection. However, the flagellum also constitutes a prime target for the host’s immune response. Accordingly, the pathogen needs to determine the spatiotemporal stage of infection and control flagellar biosynthesis in a robust manner. We found thatSalmonellauses signals from cell envelope stress-sensing systems to turn off production of flagella. We speculate that downregulation of flagellum synthesis after cell envelope damage in hostile environments aids survival ofSalmonelladuring late stages of infection and provides a means to escape recognition by the immune system.


2018 ◽  
Author(s):  
Kristy L. Hentchel ◽  
Leila M. Reyes Ruiz ◽  
Patrick D. Curtis ◽  
Aretha Fiebig ◽  
Maureen L. Coleman ◽  
...  

ABSTRACTBacterial genomes evolve in complex ecosystems and are best understood in this natural context, but replicating such conditions in the lab is challenging. We used transposon sequencing to define the fitness consequences of gene disruption in the bacteriumCaulobacter crescentusgrown in natural freshwater, compared to axenic growth in common laboratory media. Gene disruptions in amino acid and nucleotide biosynthesis pathways and in metabolic substrate transport machinery impaired fitness in both lake water and defined minimal medium relative to complex peptone broth. Fitness in lake water was enhanced by insertions in genes required for flagellum biosynthesis and reduced by insertions in genes involved in biosynthesis of the holdfast surface adhesin. We further uncovered numerous hypothetical and uncharacterized genes for which disruption impaired fitness in lake water, defined minimal medium, or both. At the genome scale, the fitness profile of mutants cultivated in lake water was more similar to that in complex peptone broth than in defined minimal medium. Microfiltration of lake water did not significantly affect the terminal cell density or the fitness profile of the transposon mutant pool, suggesting thatCaulobacterdoes not strongly interact with other microbes in this ecosystem on the measured timescale. Fitness of select mutants with defects in cell surface biosynthesis and environmental sensing were significantly more variable in lake water than in defined medium, presumably owing to day-to-day heterogeneity in the lake environment. This study reveals genetic interactions betweenCaulobacterand a natural freshwater environment, and provides a new avenue to study gene function in complex ecosystems.


Sign in / Sign up

Export Citation Format

Share Document