scholarly journals Transcriptional Studies and Regulatory Interactions between the phoR-phoP Operon and the phoU, mtpA, and ppk Genes of Streptomyces lividans TK24

2006 ◽  
Vol 188 (2) ◽  
pp. 677-686 ◽  
Author(s):  
Sofiane Ghorbel ◽  
Jan Kormanec ◽  
Alexandra Artus ◽  
Marie-Joelle Virolle

ABSTRACT The PhoR/PhoP two-component system of Streptomyces lividans was previously shown to allow the growth of the bacteria at low Pi concentrations and to negatively control antibiotic production. The present study focuses on the transcriptional analysis of phoR and phoP, along with the phoU and mtpA genes that are transcribed divergently from the phoRP operon in S. lividans. The effect of phoR, phoP, phoU, and ppk mutations on transcription of these genes was examined under phosphate-replete and phosphate-limited conditions. We demonstrated that phoR and phoP were cotranscribed as a leaderless bicistronic transcript cleaved at discrete sites toward the 3′ end of phoR. In addition, phoP could also be transcribed alone from a promoter located at the 3′ end of phoR. The phoU and mtpA genes, predicted to encode metal binding proteins, were shown to be transcribed as monocistronic transcripts. The expression of phoR-phoP, phoP, and phoU was found to be induced under conditions of Pi limitation in S. lividans TK24. This induction, requiring both PhoR and PhoP, was significantly weaker in the phoU mutant but much stronger in the ppk mutant than in the parental strain. The expression of mtpA was also shown to be up-regulated when Pi was limiting but independently of PhoR/PhoP. The induction of mtpA expression was much stronger in the phoU mutant strain than in the other strains. This study revealed interesting regulatory interactions between the different genes and allowed us to propose putative roles for PhoU and MtpA in the adaptation to phosphate scarcity.

2002 ◽  
Vol 184 (22) ◽  
pp. 6395-6402 ◽  
Author(s):  
Carsten L. Beckering ◽  
Leif Steil ◽  
Michael H. W. Weber ◽  
Uwe Völker ◽  
Mohamed A. Marahiel

ABSTRACT Previous studies with two-dimensional gel electrophoresis techniques revealed that the cold shock response in Bacillus subtilis is characterized by rapid induction and accumulation of two classes of specific proteins, which have been termed cold-induced proteins (CIPs) and cold acclimatization proteins (CAPs), respectively. Only recently, the B. subtilis two-component system encoded by the desKR operon has been demonstrated to be essential for the cold-induced expression of the lipid-modifying desaturase Des, which is required for efficient cold adaptation of the membrane in the absence of isoleucine. At present, one of the most intriguing questions in this research field is whether DesKR plays a global role in cold signal perception and transduction in B. subtilis. In this report, we present the first genomewide transcriptional analysis of a cold-exposed bacterium and demonstrate that the B. subtilis two-component system DesKR exclusively controls the desaturase gene des and is not the cold-triggered regulatory system of global relevance. In addition to this, we identified a set of genes that might participate as novel players in the cold shock adaptation of B. subtilis. Two cold-induced genes, the elongation factor homolog ylaG and the σL-dependent transcriptional activator homolog yplP, have been examined by construction and analysis of deletion mutants.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ricardo Sánchez de la Nieta ◽  
Sergio Antoraz ◽  
Juan F. Alzate ◽  
Ramón I. Santamaría ◽  
Margarita Díaz

2006 ◽  
Vol 72 (10) ◽  
pp. 6569-6577 ◽  
Author(s):  
Avinash M. Sonawane ◽  
Birendra Singh ◽  
Klaus-Heinrich Röhm

ABSTRACT Pseudomonas putida KT2440 metabolizes a wide range of carbon and nitrogen sources, including many amino acids. In this study, a σ54-dependent two-component system that controls the uptake and metabolism of acidic amino acids was identified. The system (designated aau, for acidic amino acid utilization) involves a sensor histidine kinase, AauS, encoded by PP1067, and a response regulator, AauR, encoded by PP1066. aauR and aauS deletion mutants were unable to efficiently utilize aspartate (Asp), glutamate (Glu), and glutamine (Gln) as sole sources of carbon and nitrogen. Growth of the mutants was partially restored when the above-mentioned amino acids were supplemented with glucose or succinate as an additional carbon source. Uptake of Gln, Asp, and asparagine (Asn) by the aauR mutant was moderately reduced, while Glu uptake was severely impaired. In the absence of glucose, the aauR mutant even secreted Glu into the medium. Furthermore, disruption of aauR affected the activities of several key enzymes of Glu and Asp metabolism, leading to the intracellular accumulation of Glu and greatly reduced survival times under conditions of nitrogen starvation. By a proteomics approach, four major proteins were identified that are downregulated during growth of the aauR mutant on Glu. Two of these were identified as periplasmic glutaminase/asparaginase and the solute-binding protein of a Glu/Asp transporter. Transcriptional analysis of lacZ fusions containing the putative promoter regions of these genes confirmed that their expression is indeed affected by the aau system. Three further periplasmic solute-binding proteins were strongly expressed during growth of the aauR deletion mutant on Glu but downregulated during cultivation on glucose/NH4 +. These systems may be involved in amino acid efflux.


mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Elodie Lesne ◽  
Elian Dupré ◽  
Marc F. Lensink ◽  
Camille Locht ◽  
Rudy Antoine ◽  
...  

ABSTRACTBordetella pertussiscontrols the expression of its virulence regulon through the two-component system BvgAS. BvgS is a prototype for a family of multidomain sensor kinases. In BvgS, helical linkers connect periplasmic Venus flytrap (VFT) perception domains to a cytoplasmic Per-Arnt-Sim (PAS) domain and the PAS domain to the dimerization/histidine phosphotransfer (DHp) domain of the kinase. The two linkers can adopt coiled-coil structures but cannot do so simultaneously. The first linker forms a coiled coil in the kinase mode and the second in the phosphatase mode, with the other linker in both cases showing an increase in dynamic behavior. The intervening PAS domain changes its quaternary structure between the two modes. In BvgS homologues without a PAS domain, a helical “X” linker directly connects the VFT and DHp domains. Here, we used BvgS as a platform to characterize regulation in members of the PAS-less subfamily. BvgS chimeras of homologues with natural X linkers displayed various regulation phenotypes. We identified two distinct coiled-coil registers in the N- and C-terminal portions of the X linkers. Stable coil formation in the C-terminal moiety determines the phosphatase mode, similarly to BvgS; in contrast, coil formation in the N-terminal moiety along the other register leads to the kinase mode. Thus, antagonism between two registers in the VFT-DHp linker forms the basis for activity regulation in the absence of the PAS domain. The N and C moieties of the X linker play roles similar to those played by the two independent linkers in sensor kinases with a PAS domain, providing a unified mechanism of regulation for the entire family.IMPORTANCEThe whooping cough agentBordetella pertussisuses the BvgAS sensory transduction two-component system to regulate production of its virulence factors. BvgS serves as a model for a large family of multidomain bacterial sensor kinases.B. pertussisis virulent when BvgS functions as a kinase and avirulent when it switches to phosphatase activity in response to modulating signals. Understanding the molecular regulation of those proteins might lead to new antibacterial strategies. Here, we show that the linker regions between the perception and the enzymatic domains shift between distinct states of conformation in an alternating manner in response to signals and that their antagonistic changes control sensor kinase activity. These linker regions and mechanistic principles appear to be conserved among BvgS homologues, irrespective of the presence or absence of an intervening domain between the perception and the enzymatic domains. This work has thus uncovered general molecular mechanisms that regulate activity of sensor kinases in the BvgS family.


2008 ◽  
Vol 190 (23) ◽  
pp. 7666-7674 ◽  
Author(s):  
Regina Fernández-Piñar ◽  
Juan Luis Ramos ◽  
José Juan Rodríguez-Herva ◽  
Manuel Espinosa-Urgel

ABSTRACT A two-component system formed by a sensor histidine kinase and a response regulator has been identified as an element participating in cell density signal transduction in Pseudomonas putida KT2440. It is a homolog of the Pseudomonas aeruginosa RoxS/RoxR system, which in turn belongs to the RegA/RegB family, described in photosynthetic bacteria as a key regulatory element. In KT2440, the two components are encoded by PP_0887 (roxS) and PP_0888 (roxR), which are transcribed in a single unit. Characterization of this two-component system has revealed its implication in redox signaling and cytochrome oxidase activity, as well as in expression of the cell density-dependent gene ddcA, involved in bacterial colonization of plant surfaces. Whole-genome transcriptional analysis has been performed to define the P. putida RoxS/RoxR regulon. It includes genes involved in sugar and amino acid metabolism and the sulfur starvation response and elements of the respiratory chain (a cbb3 cytochrome oxidase, Fe-S clusters, and cytochrome c-related proteins) or genes participating in the maintenance of the redox balance. A putative RoxR recognition element containing a conserved hexamer (TGCCAG) has also been identified in promoters of genes regulated by this two-component system.


1998 ◽  
Vol 36 (9) ◽  
pp. 2471-2476 ◽  
Author(s):  
Juana Magdalena ◽  
Philip Supply ◽  
Camille Locht

A PCR procedure based on the intergenic region (IR) separating two genes encoding a recently identified mycobacterial two-component system, named SenX3-RegX3, was developed and was shown to be suitable for identifying Mycobacterium bovis BCG. ThesenX3-regX3 IR contains a novel type of repetitive sequence, called mycobacterial interspersed repetitive units (MIRUs). All tested BCG strains exclusively contained 77-bp MIRUs within the senX3-regX3 IR, whereas all non-BCGM. tuberculosis complex strains contained a 53-bp MIRU, in addition to the 77-bp MIRUs. All 148 strains analyzed so far could be divided into eight different groups according to the copy numbers of the 77-bp MIRU and to the presence or absence of the 53-bp MIRU. BCG strains contained either one, two, or three 77-bp MIRUs. The other strains contained one to five 77-bp MIRUs invariably followed by a 53-bp MIRU. The consistent absence of the 53-bp MIRU in BCG strains and its presence in virulent strains allowed us to develop an enzyme-linked immunosorbent assay using specific capture oligonucleotide probes to distinguish between BCG and other M. tuberculosis complex strains.


Author(s):  
Sota Honma ◽  
Shinsaku Ito ◽  
Shunsuke Yajima ◽  
Yasuyuki Sasaki

Nitric oxide (NO) is an important signaling molecule in eukaryotic and prokaryotic cells. A previous study revealed an NOS-independent NO production metabolic cycle in which the three nitrogen oxides, nitrate (NO3-), nitrite (NO2-) and NO were generated in the actinobacterium Streptomyces coelicolor A3(2). NO was suggested to act as a signaling molecule, functioning as a hormone that regulates secondary metabolism. Here, we demonstrate the NO-mediated regulation of the production of the blue pigmented antibiotic, actinorhodin (ACT), via the heme-based DevS/R two-component system (TCS). Intracellular NO controls the stabilization or inactivation of DevS, depending on the NO concentration. An electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed the direct binding between DevR and the promoter region of actII-ORF4, resulting in gene expression. Our results indicate that NO simultaneously regulates the DevS/R TCS, thereby strictly controlling the secondary metabolism of S. coelicolor A3(2). Importance Diverse organisms, such as mammals, plants, and bacteria, utilize NO via well known signal transduction mechanisms. Many useful secondary metabolites producer Streptomyces genus bacteria had been also suggested the metabolisms regulated by endogenously produced NO; however, the regulatory mechanisms remain to be elucidated. In this study, we demonstrated the molecular mechanism by which endogenously produced NO regulates antibiotic production via DevS/R TCS in S. coelicolor A3 (2). NO serves as both a stabilizer and a repressor in the regulation of antibiotic production. This report shows the mechanism by which Streptomyces utilizes endogenously produced NO to modulate their normal life cycle. Moreover, this study implies that studying NO signaling in actinobacteria can help in the development of both clinical strategies against pathogenic actinomycetes and the actinobacterial industries.


Sign in / Sign up

Export Citation Format

Share Document