scholarly journals Separation of β-Factor Synthesis from Stimulated β-Carotene Synthesis in Mated Cultures of Blakeslea trispora

1968 ◽  
Vol 95 (2) ◽  
pp. 426-432 ◽  
Author(s):  
Richard P. Sutter ◽  
Max E. Rafelson
RSC Advances ◽  
2015 ◽  
Vol 5 (78) ◽  
pp. 63193-63201 ◽  
Author(s):  
Jing Hu ◽  
Hao Li ◽  
Yumeng Yang ◽  
Shizeng Wang ◽  
Pingwah Tang ◽  
...  

ALA promoted β-carotene production in two ways: increasing the dissolved oxygen and decreasing the consumption of acetyl-CoA.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 327
Author(s):  
Eugenia Papadaki ◽  
Fani Th Mantzouridou

In the current research, the potential of Spanish-style green olive processing wastewaters (lye and washing waters) exploitation toward natural β-carotene production by Blakeslea trispora was tested for the first time. Mating culture generated by the joint cultivation of the heterothallic fungal strains ATCC 14271 and 14272 in the non-sterile lye and washing waters was able to grow, achieving the phytotoxic hydroxytyrosol degradation by 57.3% and 66.8%, respectively. However, the low sugar and nitrogen content of the streams did not favor carotenogenesis. Alternatively, in the nutrient-enriched effluents, a notable quantity of β-carotene was produced, accounted for 61.2 mg/L (lye) and 64.1 mg/L (washing waters) (82–88% of total carotenoid content). Above all, enriched streams had a noteworthy stimulating effect on the β-carotene synthesis, because both the maximum β-carotene yield per volume of enriched effluents and specific β-carotene production rate were higher when compared with the respective values obtained from trials with synthetic reference medium without added effluents. Hydroxytyrosol and tyrosol showed high stability during the non-sterile process for β-carotene production by B. trispora grown in the enriched effluents. This finding strengthens the potential toward the generation of multiple high-value products, which could lower the natural β-carotene production costs.


2003 ◽  
Vol 58 (3-4) ◽  
pp. 225-229 ◽  
Author(s):  
Emilina D. Simova ◽  
Ginka I. Frengova ◽  
Dora M. Beshkova

Under intensive aeration (1.3 l/l min) the associated growth of Rhodotorula rubra GED2 and Lactobacillus casei subsp. casei in cheese whey ultrafiltrate (55 g lactose/l) proceeded effectively for both cultures with production of maximum carotenoids (12.4 mg/l culture fluid). For maximum amount of carotenoids synthesized in the cell, the yeast required more intensive aeration than the aeration needed for synthesis of maximum concentration of dry cells. Maximum concentration of carotenoids in the cell (0.49 mg/g dry cells) was registered with air flow rate at 1.3 l/l min, and of dry cells (27.0 g/l) at 1.0 l/l min. An important characteristic of carotenogenesis by Rhodotorula rubra GED2 + Lactobacillus casei subsp. casei was established - the intensive aeration (above 1.0 l/l min) stimulated β-carotene synthesis (60% of total carotenoids).


1957 ◽  
Vol 12 (6) ◽  
pp. 401-407 ◽  
Author(s):  
Hedwig Claes

One of the recently described mutant strains of chlorella (strain 5/520) accumulates -in the dark phytoene, phytofluene, ζ-carotene, protetrahydrolycopene and prolycopene and forms α- and β-carotene, xanthophylls and appreciable amounts of chlorophyll in light only 1, 2.The experiments described below indicate that1. O2 and light are indispensable for xanthophyll and appreciable chlorophyll synthesis. Both syntheses appear to be linked somehow.2. Carotene synthesis depends upon light but not on O2 and is not linked to xanthophyll synthesis.3. Carotenoid synthesis in light is always accompanied by a decrease of polyenes of the Porter-Lincoln sequence, which have been accumulated in the cells during previous cultivation in the dark. Evidence seems strong that these polyenes are direct precursors of the normal carotenoids.4. An as yet unidentified carotene is formed in appreciable amounts along with the normal carotenes in the light, probably as byproduct, not a precursor.


PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e100212 ◽  
Author(s):  
Karabi Datta ◽  
Gayetri Sahoo ◽  
Sellappan Krishnan ◽  
Moumita Ganguly ◽  
Swapan K. Datta

2007 ◽  
Vol 42 (2) ◽  
pp. 289-293 ◽  
Author(s):  
Fang Xu ◽  
Qi-Peng Yuan ◽  
Yan Zhu

2004 ◽  
Vol 70 (9) ◽  
pp. 5589-5594 ◽  
Author(s):  
M. Rodríguez-Sáiz ◽  
B. Paz ◽  
J. L. de la Fuente ◽  
M. J. López-Nieto ◽  
W. Cabri ◽  
...  

ABSTRACT We cloned the carB and carRA genes involved in β-carotene biosynthesis from overproducing and wild-type strains of Blakeslea trispora. The carB gene has a length of 1,955 bp, including two introns of 141 and 68 bp, and encodes a protein of 66.4 kDa with phytoene dehydrogenase activity. The carRA gene contains 1,894 bp, with a single intron of 70 bp, and encodes a protein of 69.6 kDa with separate domains for lycopene cyclase and phytoene synthase. The estimated transcript sizes for carB and carRA were 1.8 and 1.9 kb, respectively. CarB from the β-carotene-overproducing strain B. trispora F-744 had an S528R mutation and a TAG instead of a TAA stop codon. The overproducing strain also had a P143S mutation in CarRA. Both B. trispora genes could complement mutations in orthologous genes in Mucor circinelloides and could be used to construct transformed strains of M. circinelloides that produced higher levels of β-carotene than did the nontransformed parent. The results show that these genes are conserved across the zygomycetes and that the B. trispora carB and carRA genes are functional and potentially useable to increase carotenoid production.


Sign in / Sign up

Export Citation Format

Share Document